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Abstract—Traditional multi-dimensional data analysis tech-
niques such as iceberg cube cannot be directly applied to graphs
for finding interesting or anomalous vertices due to the lack of
dimensionality in graphs. In this paper, we introduce the concept
of graph icebergs that refer to vertices for which the concentration
(aggregation) of an attribute in their vicinities is abnormally
high. Intuitively, these vertices shall be “close” to the attribute
of interest in the graph space. Based on this intuition, we propose
a novel framework, called gIceberg, which performs aggregation
using random walks, rather than traditional SUM and AVG
aggregate functions. This proposed framework scores vertices by
their different levels of interestingness and finds important ver-
tices that meet a user-specified threshold. To improve scalability,
two aggregation strategies, forward and backward aggregation,
are proposed with corresponding optimization techniques and
bounds. Experiments on both real-world and synthetic large
graphs demonstrate that gIceberg is effective and scalable.

I. INTRODUCTION

The ubiquity of large-scale graphs has motivated research

in graph mining and analysis, such as frequent graph pattern

mining [1], graph summarization/compression [2], and graph

anomaly detection [3]. An important feature of real-world

graphs is that they often contain attributes on their vertices.

For instance, in an academic collaboration network, a vertex is

an author and the vertex attributes can be their research topics.

In a customer social network, the vertex attributes can be the

products the customers purchased. Various studies have been

dedicated to mining attributed graphs [4], [5], [6].

Given a large vertex attributed graph, how can we find

interesting vertices or anomalies? Certainly, the interestingness

criteria vary among different applications [7], [3], [8]. In this

paper, we introduce a generic concept of graph icebergs that

refer to vertices for which the concentration (aggregation)

of an attribute in their vicinities is abnormally high. The

name, “iceberg”, is borrowed from the concept of iceberg

queries proposed in [9]. When querying traditional relational

databases, many applications entail computing aggregate func-

tions over an attribute (or a set of attributes) to find aggregate

values above some specified threshold. Such queries are called

iceberg queries, because the number of above-threshold results

is often small (the tip of an iceberg), compared to the large

amount of input data [9]. Analogously, an aggregate function,

such as the percentage of neighboring vertices containing the

attribute, can be applied to each vertex in the graph, to assess

the concentration of a certain attribute within the vertex’s

vicinity. An aggregate score is computed for each vertex’s

vicinity. Graph iceberg vertices are retrieved as those whose

aggregate score is above a given threshold.

Applications of graph iceberg mining abound, including

target marketing, recommendation systems, social influence

analysis, intrusion detection, and so on. In a social network, if

many of John Doe’s friends bought an iPhone but he has not,

he would be a good target for iPhone promotion, since he could

be influenced by his friends. In a geographic network, we can

find sub-networks where crimes occur more often than the

rest of the network. The detection of such sub-networks could

help law enforcement officers better allocate their resources.

In addition, if the detected iceberg vertices form sparse sub-

graphs, social influence analysis can be applied, since sparse

edge connections among iceberg vertices often indicate social

influence, rather than homophily [10].
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Fig. 1. Graph Iceberg

Figure 1(a) shows a vertex-attributed graph, where black

vertices are those containing the attribute of interest, which

could be a product purchase, a network attack, a reported

crime, etc. An aggregate score is computed for each vertex,

indicating the concentration level of the attribute in its vicinity.

Figure 1(b) shows that the vertices can be rearranged according

to their aggregate scores. Vertices with higher scores are

positioned higher. By inserting cutting thresholds with differ-

ent values, we can retrieve different sets of iceberg vertices.
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Fig. 2. PPV Aggregation vs. Other Aggregation Measures

These retrieved icebergs can be further processed to form

connected subgraphs. Those subgraphs contain only vertices

whose local neighborhoods exhibit high concentration of an

attribute of interest. Such analysis will be very convenient for

users to explore large graphs since they can focus on just

a few, important vertices and by varying the thresholds and

the attributes of interest, they can change their focus. Note

that this differs from dense subgraph mining and clustering,

since connected subgraphs formed by iceberg vertices do not

necessarily have high edge connectivity.

Now the question is what kind of aggregate functions one

shall use to find iceberg vertices? There are many possible

measures to describe a vertex’s local vicinity. Yan et al.

proposed two aggregate functions over a vertex’s h-hop neigh-

borhood, SUM and AVG [5]. In our scenario, for a vertex v,

SUM and AVG compute the number and percentage of black

vertices in v’s h-hop neighborhood, respectively. However, we

argue that SUM and AVG fail to effectively evaluate how

close a vertex is to an attribute. Figure 2 shows the 2-hop

neighborhoods of vertices x and y. Both x and y have 18

neighbors that are within 2-hop distance away. For both x and

y, 8 out of the 18 2-hop neighbors are black; namely, 8 out of

18 2-hop neighbors contain the attribute of interest. Therefore,

both SUM and AVG will return the same value on x and y.

However, x is clearly “closer” to the attribute than y, because

all of x’s adjacent neighbors are black, whereas most of y’s

black 2-hop neighbors are located on the second hop. Thus

we need a different aggregate function to better evaluate the

proximity between a vertex and an attribute.

In this paper, we use the random walk with restart

model [11] to weigh the vertices in one vertex’s vicinity. A

random walk is started from a vertex v; at each step the walker

has a chance to be reset to v. This results in a stationary

probability distribution over all the vertices, denoted by the

personalized PageRank vector (PPV) of v [11]. The probability

of reaching another vertex u reflects how close v is to u
with respect to the graph structure. The concentration of an

attribute q in v’s local neighborhood is then defined as the

aggregation of the entries in v’s PPV corresponding to those

vertices containing the attribute q, namely the total probability

to reach a node containing q from v. This definition reflects

the affinity, or proximity, between vertex v and attribute q in

the graph. In Figure 2, by aggregating over x and y’s PPVs,

we can capture the fact that x is in a position more abnormal

than y, since x has a higher aggregate score than y.

As an alternative, we can use the shortest distance from

vertex v to attribute q to measure v’s affinity to q. However,

shortest distance does not reflect the overall distribution of

q in v’s local neighborhood. It is possible that the shortest

distance is small, but there are only few occurrences of q in

v’s local neighborhood. In the customer network example, if

John has a close friend who purchased an iPhone, and this

friend is the only person John knows that did, John might not

be a promising candidate for iPhone promotion.

With such PPV-based definition of graph icebergs, we

design a scalable framework, called gIceberg, to compute

the proposed aggregate measure. Vertices whose measure is

above a threshold are retrieved as graph iceberg vertices.

These iceberg vertices can be further processed (e.g. graph

clustering) to discover graph iceberg regions. Section VI

discusses an interesting clustering property of iceberg vertices,

which facilitates the discovery of those regions. We will also

show in our experiments that gIceberg discovers interesting

author groups from the DBLP network.

Our Contributions. (1) A novel concept, graph iceberg, is

introduced. (2) gIceberg finds iceberg vertices in a scalable

manner, which can be leveraged to further discover iceberg

regions. (3) Two aggregation methods are designed to quickly

identify iceberg vertices, which hold their own stand-alone

technical values. (4) Experiments on real-world and synthetic

graphs show the effectiveness and scalability of gIceberg.

II. PRELIMINARIES

Previous studies [12] showed that personalized PageRank

(PPR) measures the proximity of two vertices. If the aggre-

gation is done on a PPV with respect to an attribute, the

aggregate score naturally reflects the concentration of that

attribute within a vertex’s vicinity. Given an undirected graph

G = (V,E,L), where V is the set of vertices, E is the set

of edges, and L = {q1, . . . , ql} is the set of attributes, let

L(v) ⊆ L be the set of attributes v contains. This paper

focuses on boolean attributes, which means for an attribute

q, a vertex either contains it or not. A query is an attribute in

L. Our framework can be extended to queries with multiple

attributes, scalar attributes and edge-weighted graphs.

Let M be the transition matrix. Mij = 1/dvj if there is an

edge between vertices vi and vj ; and 0 otherwise. dvj is the

vertex degree of vj . c is the restart probability in the random

walk model. A preference vector s, where |s|1 = 1, encodes

the amount of preference for each vertex. PageRank vector p

is defined as the solution of Equation (1) [11]:

p = (1− c)Mp + cs. (1)

If s is uniform over all vertices, p is the global PageRank

vector. For nonuniform s, p is the personalized PageRank

vector of s. When s = 1v , where 1v is the unit vector with

value 1 at entry v and 0 elsewhere, p is the personalized

PageRank vector of vertex v, also denoted as pv. The xth

entry in pv , pv(x), reflects the importance of x in the view of

v. In this paper, we typeset vectors in boldface (e.g., pv) and

use parentheses to denote an entry in the vector (e.g., pv(x)).



Definition 1 (Black Vertex): For an attribute q, a vertex that

contains the attribute q is called a black vertex.

We propose to aggregate over the PPV to define the close-

ness of a vertex to an attribute q.

Definition 2 (q-Score): For an attribute q, the q-score of v
is defined as the aggregation over v’s PPV:

Pq(v) = Σx|x∈V,q∈L(x)pv(x), (2)

where pv is the PPV of v.

The q-score is the sum of the black vertices’ entries in

a vertex’s PPV. Calculating q-scores for a query is called

personalized aggregation. A vertex with a high q-score has a

large number of black vertices within its local neighborhood.

Intuitively, q-score measures the probability for a vertex v to

reach a black vertex, in a random walk starting from v after

the walk converges.

Definition 3 (Iceberg Vertex): For a vertex v, if its q-score

is above a certain threshold, v is called an iceberg vertex;

otherwise it is called a non-iceberg vertex.

Problem 1 (Graph Iceberg Problem): For an undirected

vertex-attributed graph G = (V,E,L) and a query attribute q,

the graph iceberg problem finds all the iceberg vertices given

a user-specified threshold θ.

The power method computes the PageRank vectors itera-

tively as in Equation (1) until convergence [13], which is

expensive for large graphs. Random walks were used to

approximate both global and personalized PageRank [14],

[15], [16]. The PPV of vertex v, pv, can be approximated

using a series of random walks starting from v, each of

which continues until its first restart. The length of each

walk follows a geometric distribution. [16] discovered the

following theory: Consider a random walk starting from v
and taking L steps, where L follows a geometric distribution

Pr[L = i] = c(1 − c)i, i = {0, 1, 2, . . .} with c as the restart

probability, then the PPR of vertex x in the view of v is the

probability that the random walk ends at x. Combining this

with the Hoeffding Inequality [17], we establish probabilistic

bounds on approximating PPRs using random walks.

Theorem 1 (PPV Approximation): Suppose R random

walks are used starting from vertex v to approximate v’s PPV,

pv. Let p̃v(x) be the percentage of those R walks ending at

x, then we have Pr[p̃v(x) − pv(x) ≥ ǫ] ≤ exp{−2Rǫ2} and

Pr[|p̃v(x) − pv(x)| ≥ ǫ] ≤ 2 exp{−2Rǫ2}, for any ǫ > 0.

The proof is in the appendix. Theorem 1 states that if

enough random walks are used, the error between approximate

and actual PPR is limited probabilistically. For example, if

ǫ = 0.05 and R = 500, Pr[pv(x) − ǫ ≤ p̃v(x) ≤ pv(x) +
ǫ] ≥ 83.58%. We use such random walks in gIceberg to

approximate PPVs on large graphs.

III. FRAMEWORK OVERVIEW

We propose the gIceberg framework to discover graph

iceberg vertices. It takes two steps: (1) user specifies a query

attribute q and a q-score cut-off threshold θ; and (2) gIceberg
identifies vertices whose q-score is above θ. Vertices whose

q-score is below θ are pruned. For better efficiency, random

Algorithm 1: The gIceberg Framework

Input: G, query q, threshold θ, approximate error ǫ
Output: Graph iceberg vertices
1 Apply random walks to get approximate PPVs;
2 Perform aggregation over approximate PPVs to compute

approximate q-scores;
3 Return vertices whose approximate q-score is above θ − ǫ;
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Fig. 3. Forward & Backward Aggregation

walks are used to approximate PPVs and the aggregation is

done on approximate PPVs. Algorithm 1 gives an overview

of gIceberg. Due to the error introduced by approximation,

gIceberg returns vertices whose approximate q-score is above

the threshold minus an error tolerance, θ− ǫ. The accuracy of

such process will be analyzed later.

One way to properly set the threshold θ is to consider θ as

the significance level of q-scores. Namely, θ can be chosen via

assessing the distribution of vertex q-scores in random cases.

We can randomly permute the attribute q among the vertices

in the graph and calculate the empirical distribution of vertex

q-scores; then we choose a point in the distribution to be θ
so that only a small percentage (e.g., 5%) of vertices in the

distribution have q-scores higher than θ.

The core of gIceberg is the aggregation over PPVs. Two

efficient aggregation schemes, forward aggregation (FA) and

backward aggregation (BA), are proposed with respective

optimization techniques. FA computes the q-score by adding

the PPR scores of all the black vertices for the current vertex;

BA starts from the black vertices and back-propagates their

PPR scores to other vertices. In Figure 3(a), v’s q-score is the

sum of the PPR scores of x and y in v’s PPV: pv(x) + pv(y).
In Figure 3(b), the bold black arrows indicate the direction

of PageRank aggregation, which starts from black vertices,

and propagates backward to other vertices. For black vertex

x, its contribution to v’s q-score can be written as a function

of v’s PPR with respect to x: fx,v(px(v)). v’s q-score is the

sum of the contributions of all the black vertices. Approximate

aggregation will also be introduced and analyzed later.

IV. FORWARD AGGREGATION

Basic FA uses random walks to approximate the PPVs.

Aggregation is subsequently conducted over the approximate

PPVs. We then propose optimization techniques for FA, in-

cluding Pivot vertex-based FA (PFA) that is designed to avoid

a linear scan of all vertices. PFA incorporates various q-score

bounds for efficient vertex pruning.
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A. Forward Aggregation Approximation

Applying FA on approximate PPVs generated by random

walks is called FA approximation, as shown in Figure 4.

For each vertex v, R random walks, {W1, . . . ,WR}, are

conducted starting from v, to approximate v’s PPV. Each walk

continues until its first restart. Once the approximate PPV, p̃v,

is derived, the approximate q-score of v is the sum of the

entries in p̃v corresponding to the black vertices. We analyze

the accuracy of such approximate aggregation by using the

Hoeffding Inequality as in Theorem 2.

Theorem 2 (FA Approximation): Suppose we perform R
random walks from vertex v to compute v’s approximate PPV,

p̃v. Let P̃q(v) be the approximated q-score of v. We have

Pr[P̃q(v) − Pq(v) ≥ ǫ] ≤ exp{−2Rǫ2} and Pr[|P̃q(v) −
Pq(v)| ≥ ǫ] ≤ 2 exp{−2Rǫ2}, for any ǫ > 0.

The proof is in the appendix. Now we analyze how well FA

retrieves real iceberg vertices. As in Algorithm 1, FA retrieves

all vertices whose approximate q-score is above θ− ǫ. We use

recall to measure the accuracy of such retrieval. For certain

θ and ǫ, recall is computed as
∣

∣{v|Pq(v) ≥ θ, P̃q(v) ≥ θ −
ǫ}
∣

∣/
∣

∣{v|Pq(v) ≥ θ}
∣

∣. Recall is the percentage of real iceberg

vertices that are retrieved by the approximate aggregation.

Corollary 1 (FA Recall): Given a q-score cut-off threshold

θ, for vertex v such that Pq(v) ≥ θ, we have Pr[P̃q(v) ≥
θ − ǫ] ≥ 1 − 2 exp{−2Rǫ2}, where ǫ > 0 and P̃q(v) is v’s

q-score using FA approximation.

Proof: The proof follows from Theorem 2.

Therefore, if we use θ− ǫ as the threshold on approximate

q-scores to retrieve iceberg vertices, Corollary 1 says that we

can derive a theoretical lower bound for the expected recall,

i.e., Pr[P̃q(v) ≥ θ − ǫ], where v is an iceberg vertex.

B. Improving Forward Aggregation

Although FA simulates random walks to estimate PPVs,

it still calculates the PPV for each vertex. In this section,

we propose pruning techniques to avoid computing all the

approximate PPVs. We first adapt the decomposition property

of PPVs to the case of q-scores (Theorem 3). This property

means that we can bound the q-scores of v’s neighbors if we

know v’s (Corollary 2). We then further develop a better bound

for the 2-hop neighbors by exploiting the common neighbors

of two vertices (Theorem 4). Finally, we establish “pivot-

client” relations between vertices and use q-scores of the pivot

vertices to prune client vertices.

1) Aggregation Decomposition: We first introduce the q-

score decomposition property. Previous studies proposed PPV

Decomposition Theorem [18], which expresses the PPV of a

vertex in terms of those of its adjacent neighbors.

pv =
1− c

|N1(v)|
Σx∈N1(v)px + c1v, (3)

where N1(v) is the set of 1-hop neighbors of v, c is the restart

probability, and 1v is the unit vector with value 1 at entry

v and 0 elsewhere. Let dv = |N1(v)|. We find that similar

decomposition can be applied on q-scores.

Theorem 3 (q-Score Decomposition): Given a query at-

tribute q, the q-score of a vertex v ∈ V , Pq(v), can be

expressed via those of its neighbors as follows,

Pq(v) =
1− c

dv
Σx∈N1(v)Pq(x) + c1q∈L(v), (4)

where 1q∈L(v) is an indicator function: 1q∈L(v) = 1 if q is an

attribute of vertex v, and 1q∈L(v) = 0 otherwise.

Proof: According to Definition 2 and Equation (3):

Pq(v) =Σy|y∈V,q∈L(y)pv(y)

=Σy|y∈V,q∈L(y)

( 1− c

|N1(v)|
Σx∈N1(v)px(y) + c1v(y)

)

=
1− c

dv
Σx∈N1(v)Σy|y∈V,q∈L(y)px(y)

+ cΣy|y∈V,q∈L(y)1v(y)

=
1− c

dv
Σx∈N1(v)Pq(x) + c1q∈L(v).

Therefore, Theorem 3 is proven.

2) q-Score Bounds: Theorem 3 expresses the q-score of a

vertex in terms of those of its adjacent neighbors. Therefore,

if the q-score of a vertex is known, we can derive an upper

bound on the q-scores of this vertex’s neighbors. If such an

upper bound is smaller than threshold θ, we can prune those

neighbors without actually computing their q-scores.

Corollary 2 (Neighbor q-Score Bound): Given a query at-

tribute q, for any vertex v ∈ V , its q-score, Pq(v), and the

q-score of any of v’s neighbor x, Pq(x), satisfy Pq(x) ≤
dv

1−c
(Pq(v)− c1q∈L(v)).
Proof: The proof follows from Theorem 3.

The bound in Corollary 2 could be loose since dv

1−c
is always

greater than 1. For vertices with moderate degrees, the bound

can easily exceed 1, making it a trivial bound. Next we propose

a better bound for the 2-hop neighborhoods. We define the

pivot-client (PC) relation between two vertices having similar

neighborhoods. If two vertices u and v have similar 1-hop

neighborhoods, namely N1(u) and N1(v) overlap, we can use

the q-score of u to bound that of v, and vice versa (Theorem 4).

Theorem 4 (PC q-Score Bound): Suppose we have two

vertices u and v. N1(u) ∩ N1(v) is not empty. Let σu =
|N1(u)∩N1(v)|/|N1(u)| and σv = |N1(u)∩N1(v)|/|N1(v)|.
Then the q-scores of u and v satisfy: Pq(v) ≤ Pq(u)du/dv +
c(1q∈L(v) − 1q∈L(u)du/dv) + (1 − c)(1− σv).

Proof: Let C = N1(u)∩N1(v) denote the set of common

neighbors shared between u and v. Therefore, we have σu =
|C|/|N1(u)| and σv = |C|/|N1(v)|. According to Theorem 3:

Pq(u) =
1− c

du

(

Σx∈CPq(x)+Σx∈N1(u)\CPq(x)
)

+c1q∈L(u),
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Likewise, we have

Pq(v) =
1− c

dv

(

Σx∈CPq(x)+Σx∈N1(v)\CPq(x)
)

+ c1q∈L(v).

Combining the above two equations, we have:

Pq(v) =
1− c

dv

( du
1− c

(Pq(u)− c1q∈L(u))

− Σx∈N1(u)\CPq(x) + Σx∈N1(v)\CPq(x)
)

+ c1q∈L(v)

=
du
dv

Pq(u) + c
(

1q∈L(v) −
du
dv

1q∈L(u)

)

+
1− c

dv

(

Σx∈N1(v)\CPq(x)− Σx∈N1(u)\CPq(x)
)

≤
du
dv

Pq(u) + c
(

1q∈L(v) −
du
dv

1q∈L(u)

)

+
1− c

dv
Σx∈N1(v)\CPq(x). (5)

Since all entries of a PPV add up to 1, the aggregate value

for any vertex v, Pq(v) ≤ 1. Therefore, we have:

1− c

dv
Σx∈N1(v)\CPq(x) ≤

1− c

dv
(|N1(v)| − |C|)

=(1− c)(1− σv). (6)

Applying Equation (6) to Equation (5), we have: Pq(v) ≤
du

dv
Pq(u) + c(1q∈L(v) −

du

dv
1q∈L(u)) + (1− c)(1 − σv).

If we choose u as the pivot and v as one of its clients, we

can use u’s q-score to bound v’s. If a pivot has a low q-score,

likely some of its clients can be quickly pruned. Theorem 4

shows that larger σv and σu lead to better bounds. Pivot-client

relations are established as follows: for vertices u and v, if

the common 1-hop neighbors take at least σ fraction of each

vertex’s neighborhood, i.e., σu ≥ σ and σv ≥ σ, we designate

either of them as the pivot and the other as the client. Clearly,

u and v are within 2-hop of each other. Theorem 4 bounds the

q-scores for some of a pivot’s 2-hop neighbors. Figure 5 shows

that vertices u and v share four 1-hop neighbors in common:

{a, b, c, d}. If σ = 0.5, either of them can be the pivot of the

other. Algorithm 2 shows how to find pivots and their clients.

3) Approximate q-Score Bounding and Pruning: The pro-

posed q-score bounds express the relation between the real q-

scores of vertices. However, computing real q-scores is costly

for large graphs. Since random walks are used in gIceberg to

approximate PPVs and approximate q-scores are subsequently

computed, will those bounds still be effective for pruning? In

this section, we analyze the effectiveness of using approximate

q-scores to derive approximate q-score bounds. Our findings

Algorithm 2: Pivot Vertex Selection

Input: G, neighborhood similarity threshold σ
Output: Pivot vertices VP and their clients
1 for Each unchecked v in V do
2 Grow v’s 2-hop neighborhood N2(v) using BFS;
3 For each unchecked u in N2(v), check if N1(u) and

N1(v) satisfy similarity threshold σ; if so, insert u into
v’s client set, insert v to VP and mark both v and u as
checked;

4 Return all pivot vertices VP and their clients;

are: given a q-score cut-off threshold θ, if approximate q-

scores are used to derive approximate q-score bounds as in

Corollary 2 and Theorem 4, with some adjustment to θ, the

bounds can still be leveraged to prune vertices with a certain

accuracy. Specifically, those vertices pruned by those bounds

are very likely to be real non-iceberg vertices. The details are

in Theorems 5 and 6 and the proofs are in the appendix.

Theorem 5 (Approximate Neighbor Bound): Let x be an

adjacent vertex of vertex v. For a given pruning cut-off thresh-

old θ, let θ1 = θ−dvǫ/(1−c)+ǫ. If dv

1−c
(P̃q(v)−c1q∈L(v)) <

θ1− ǫ, where P̃q(v) is the approximate q-score of v using FA

approximation with R random walks, then x can be pruned

and we have Pr[Pq(x) < θ] ≥ 1− 2 exp{−2Rǫ2}.

Theorem 6 (Approximate PC Bound): Suppose we have

vertices u and v and N1(u) ∩N1(v) is not empty. Let σu =
|N1(u)∩N1(v)|/|N1(u)| and σv = |N1(u)∩N1(v)|/|N1(v)|.
For a given pruning cut-off threshold θ, let θ2 = θ−duǫ/dv+ǫ.
If P̃q(u)du/dv+c(1q∈L(v)−1q∈L(u)du/dv)+(1−c)(1−σv) <

θ2− ǫ, where P̃q(u) is the approximate q-score of u using FA

approximation with R random walks, then v can be pruned

and we have Pr[Pq(v) < θ] ≥ 1− 2 exp{−2Rǫ2}.

To summarize, this section shows: (1) Two types of q-score

bounds can be used to prune non-iceberg verticess. (2) When

random walks are used to approximate q-scores, the bounds

become approximate too. However, with certain adjustment to

the thresholds and pruning rules, the likelihood for a pruned

vertex to be a real non-iceberg vertex can be bounded. We will

show later in our experiments that PFA yields good recall in

practice. Algorithm 3 shows the workflow of PFA.

Algorithm 3: Pivot Vertex-Based Forward Aggregation

Input: G, query q, threshold θ, neighborhood similarity
threshold σ, approximation error ǫ

Output: Graph iceberg vertices
1 Index all the pivot vertices VP using σ as in Alg. 2;
2 for Each v in VP do
3 Use random walks to get v’s approximate PPV, p̃v;
4 Get v’s approximate q-score using p̃v;
5 Use approximate q-score bounds to prune vertices using

adjusted thresholds based on θ;

6 for Each v that is not pruned do
7 Use random walks to get v’s approximate PPV, p̃v;
8 Get v’s approximate q-score using p̃v;

9 Return vertices with approximate q-score above θ − ǫ;
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V. BACKWARD AGGREGATION

In this section, we introduce a different aggregation scheme

called backward aggregation (BA). Instead of aggregating

PageRank in a forward manner (adding up the entries of

black vertices in a PPV), BA starts from black vertices, and

propagates values in their PPVs to other vertices in a backward

manner. Specifically, based on the reversibility of random

walks, the symmetric property of degree-normalized PPV [19]

states that: in an undirected graph G, for any two vertices u
and v, the PPVs of u and v satisfy:

pu(v) =
dv
du

pv(u), (7)

where du and dv are the degrees of u and v, respectively.

If we know v’s PageRank with respect to u, pu(v), we can

quickly compute the value for its reverse, pv(u), without

actually computing v’s PPV. For a given query attribute q,

the PageRank values of black vertices in any vertex v’s PPV

are the key to computing v’s q-score. In Figure 3(b), BA starts

from black vertices, computes their PPVs, and propagates their

contributions to the other vertices’ q-scores backward (black

arrow) according to Equation (7). BA provides a possibility

to quickly compute q-scores for the entire vertex set, by

starting from only those black vertices. Given that black

vertices usually occupy a small portion of V , BA reduces the

aggregation time significantly.

A. Backward Aggregation Approximation

Applying BA on approximate PPVs generated by random

walks is called BA approximation. In Figure 6, for each

black vertex x we perform R random walks, {W1, . . . ,WR},

from x to approximate x’s PPV. Each walk continues until

its first restart. Once such process is done on all the black

vertices, for any vertex v in G, v’s approximate q-score is

the sum of the reverse PageRank scores of the vth entries

in the approximate PPVs of the black vertices, computed

according to Equation (7). We now analyze the accuracy of

such approximate aggregation.

Theorem 7 (BA Approximation): Let Vq ⊆ V be the set of

black vertices. Suppose we perform R random walks from

each black vertex, x, to approximate its PPV, p̃x. For any

vertex v ∈ V , let P̃q(v) = Σx∈Vq

dx

dv
p̃x(v) be the approximate

q-score of v using BA. We have Pr[P̃q(v) − Pq(v) ≥ ǫ] ≤
exp{−2Rd2vǫ

2/Σx∈Vq
d2x} and Pr[|P̃q(v) − Pq(v)]| ≥ ǫ] ≤

2 exp{−2Rd2vǫ
2/Σx∈Vq

d2x}, where ǫ > 0.

The proof is in the appendix. Now we analyze how well

BA retrieves iceberg vertices. As in Algorithm 4, BA retrieves

Algorithm 4: Backward Aggregation

Input: G, query q, threshold θ, approximation error ǫ
Output: Graph iceberg vertices
1 for Each black vertex x do
2 Use random walks to get x’s approximate PPV, p̃x;
3 for Each entry p̃x(v) do

4 Compute the reverse entry p̃v(x) =
dx
dv

p̃x(v);

5 Add p̃v(x) to v’s q-score: P̃q(v);

6 Return vertices with approximate q-score above θ − ǫ;

all the vertices whose approximate q-score is above θ − ǫ
as iceberg vertices. Again we use recall as the measure,

which evaluates the percentage of real iceberg vertices that

are captured by the BA approximation.

Corollary 3 (BA Recall): Given a q-score cut-off threshold

θ, for vertex v such that Pq(v) ≥ θ, we have Pr[P̃q(v) ≥
θ − ǫ] ≥ 1 − 2 exp{−2Rd2vǫ

2/Σx∈Vq
d2x}, where ǫ > 0 and

P̃q(v) is v’s q-score using BA approximation.

Proof: The proof follows from Theorem 7.

Therefore the likelihood for a real iceberg vertex v to be

retrieved by BA can be bounded. This bound is not as tight

as the one for FA. We later show in our experiments that BA

achieves good recall in practice, given a reasonable number of

random walks. Algorithm 4 describes the BA workflow.

VI. CLUSTERING PROPERTY OF ICEBERG VERTICES

Graph iceberg vertices can further be used to discover graph

iceberg regions. We achieve this by methods ranging from

graph clustering to simple connected component finding. In

this section, we describe some interesting properties of how

iceberg vertices are distributed in the graph. We discovered

that iceberg vertices naturally form connected components

surrounding the black vertices in the graph.

A. Active Boundary

Define a region R = {VR, ER} to be a connected subgraph

of G, and the boundary of R, N(R), to be the set of vertices

such that N(R)∩VR = ∅ and each vertex in N(R) is directly

connected to at least one vertex in VR. In Figure 7(a), the dark

area surrounding region R forms R’s boundary. Theorem 3

shows that the q-score of a non-black vertex is exactly (1− c)
times the average q-score of all its neighbors.

Theorem 8 (Boundary): Given a region R in G which does

not contain any black vertex, if the q-scores of all vertices in

N(R) are below the q-score threshold θ, then no vertex in VR

has q-score above θ.

Proof: Equation (4) shows that the q-score of a non-black

vertex is lower than the maximum q-score of its neighbors.

Suppose there is a vertex v0 ∈ VR such that Pq(v0) > θ. Since

R does not contain black vertices, v0 is non-black, thus at least

one of v0’s neighbors has q-score higher than Pq(v0). Let it

be v1. The same argument holds for v1. A path is therefore

formed with a strictly increasing sequence of q-scores, and all

the q-scores in this sequence are > θ. Since |VR| is finite,

eventually the path goes through R’s boundary, N(R). Since
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all vertices in N(R) have a q-score below θ, a contradiction

is reached. Therefore no such vertex v0 exists and all vertices

in VR have q-scores below θ.

Corollary 4 (Active Path): If vertex v is an iceberg vertex,

there exists a path, called an “active path”, from v to a black

vertex, that all vertices on that path are iceberg vertices.

Proof: Assume there is an iceberg vertex v0 (non-black)

that can not be linked to a black vertex via such a path. Again

we can follow a path starting from v0 to one of its neighbors,

v1, an iceberg vertex, then to another such neighbor of v1,

and so on. Such a path contains only iceberg vertices. A set

of such paths form a region surrounding v0, containing only

iceberg vertices. The boundary of this region only contains

vertices with q-scores below θ. The assumption dictates there

is no black vertex in this region. This contradicts Theorem 8.

So no such vertex v0 exists.

Corollary 5 (Active Region & Active Boundary): Given a

query attribute q and q-score threshold θ, all iceberg vertices in

G concentrate surrounding black vertices. Each black vertex

is surrounded by a region containing only iceberg vertices,

which is called “active region”. The boundary of such a region

is called “active boundary”. The q-scores of the vertices in the

active boundary are all below θ.

Proof: The proof follows from Corollary 4.

Corollary 5 suggests that in order to retrieve all iceberg

vertices, we only need to start from black vertices and grow

their active regions. The key to grow an active region of a

black vertex is to find the active boundary of this region. It is

possible that several active regions merge into one if the black

vertices are close to each other. Figure 7(b) shows examples

of active regions and boundaries. Black vertices contain the

query attribute and gray vertices are iceberg vertices. Each

black vertex is embedded in an active region containing only

iceberg vertices, which is encompassed by a solid black line.

All the white vertices between the solid black line and the red

dashed line form the active boundaries of those regions. All

vertices with grid pattern which are not in any active region

have a q-score below the threshold.

Therefore, we have discovered this interesting “clustering”

property of iceberg vertices. All iceberg vertices tend to cluster

around the black vertices in the graph, which automatically

form several interesting iceberg regions in the graph. The

size of an iceberg region can be controlled by varying the

q-score threshold.

VII. EXPERIMENTS

gIceberg is evaluated using both real-world and synthetic

data. We first conduct motivational case studies on the DBLP

network to show that gIceberg is able to find interesting

author groups. The remaining experiments focus on: (i) ag-

gregation accuracy; (ii) forward aggregation (FA) and back-

ward aggregation (BA) comparison; (iii) impact of attribute

distributions; and (iv) scalability. We observe that: (1) Random

walk approximation achieves good accuracy. (2) FA is slightly

better than BA in recall and precision, while BA is generally

much faster. (3) Pivot vertex selection and q-score bounding

effectively reduce runtime. (4) gIceberg is robust to various

attribute distributions, and BA is efficient even for dense

attribute distribution; (5) BA scales well on large graphs. All

the experiments are conducted on a machine that has a 2.5GHz

Intel Xeon processor, 32G RAM, and runs 64-bit Fedora 8

with LEDA 6.0 [20]. Figures are best viewed in color.

A. Data Sets

Customer Network (Customer). This is a proprietary data

set provided by an e-commerce corporation offering online

auction and shopping services. The vertices are customers and

the edges are their social interactions. The attributes of a vertex

are the products that the customer has purchased. This graph

has 794,001 vertices, 1,370,284 edges, and 85 product names.

DBLP Network (DBLP). This is built from the DBLP1

repository. Each vertex is an author and each edge represents a

co-authorship. The keywords in paper titles are used as vertex

attributes. We use a subset of DBLP containing 130 important

keywords extracted by Khan et al. [21]. This graph contains

387,547 vertices and 1,443,873 edges.

R-MAT Synthetic Graphs (R-MAT). A set of synthetic

graphs with power-law degree distributions and small-world

characteristics are generated by the GTgraph toolkit2 using

the Recursive Matrix (R-MAT) graph model [22]. The vertex

number spans across 500K , 2M , 4M , 6M , 8M , 10M . The

edge number spans across 3M , 8M , 16M , 24M , 32M , 40M .

TABLE I
QUERY ATTRIBUTE EXAMPLES

Data Sets Query Attribute Examples

Customer
“Estée Lauder Eye Cream”, “Ray-Ban Sunglasses”

“Gucci Glasses”, “A&F Women Sweatshirts”

DBLP
“Database”, “Mining”, “Computation”
“Graph”, “Classification”, “Geometry”

50 queries are used for each graph. Table I shows some

query examples for Customer and DBLP. The attribute gen-

erator for R-MAT will be introduced in Section VII-E. The

q-score threshold is θ = 0.5, if not otherwise specified.

B. Case Study

To show that gIceberg finds interesting vertices in a real

graph, we conduct a case study on DBLP: (1) given a user

1www.informatik.uni-trier.de/∼ley/db/
2http://www.cse.psu.edu/∼madduri/software/GTgraph/



I.  Manolescu  ( 43)T. Milo (30) A.  Boni fati ( 26)

D. Florescu (22)

S.  Ab iteboul ( 55)

V. Vianu (20)

A. Pug liese  ( 18)D.  Suci u ( 29)

M. J.  Ca rey (16)

. . .

. . .

. . .

Threshold = 0.33Threshold = 0.3

S.  Par abos chi (15) L.  T anca (17)

“XML”

(a) Keyword: “XML”

S.  Madden (8)

U.  Çe tintemel ( 20) S.  B.  Z donik (20)

Y.  Xing (9)

N. Tat bul (14)

M. Ch erniack (9)

M. Bala zinska (9) M. St onebraker ( 11)

. . .
. . .

Th reshold = 0.2 7

Threshold = 0.24
“S tream”

J.  H. Hwang (13)

(b) Keyword: “Stream”

Fig. 8. Case Studies on DBLP

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 100 500 2000

A
cc

u
ra

cy

Number of Random Walks

FA
BA

(a) Customer Subgraph

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 100 500 2000

A
cc

u
ra

cy

Number of Random Walks

FA
BA

(b) DBLP 2010

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 100 500 2000

A
cc

u
ra

cy

Number of Random Walks

FA
BA

(c) R-MAT 3K

Fig. 9. Random Walk-Based Aggregation Accuracy

specified research topic and an iceberg threshold, we find

the iceberg vertices and remove the rest; (2) these vertices

form several connected components in the remaining graph.

The iceberg vertices imply that many of their neighbors have

published in the user specified topic. Therefore, the compo-

nents shall represent collaboration groups in that area. We will

demonstrate that gIceberg can indeed discover interesting and

important author groups.

Figure 8 shows the top author groups found by gIceberg

for two query keywords: “XML” and “Stream”. The number

next to each author’s name is the number of his/her publi-

cations in that keyword field. All the vertices who have 7+

papers containing the query keyword are retained. There is an

edge between two authors if they have collaborated at least

7 times. In gIceberg, we set the threshold at a small value

and increase it until the author groups become small enough.

Take “Stream” for example: the author group size decreases

from 9 to 6, as threshold increases from 0.24 to 0.27. For

0.27, the current author group contains 6 authors (in blue).

It seems the author groups that gIceberg discovers are of

high-quality. They are specialized and well-known in the field

of “XML” and “Stream”. In addition, by varying the q-score

threshold, users can easily zoom in and zoom out the author

groups and exploit the hierarchical structure with views of

multiple granularities. Such zoom in/out effect is not available

if we simply use the number of papers as a filter, which will

generate many small disconnected components. For example,

in Figure 8(b), likely only U. Çetintemel and S. Zdonik will

be ranked high, and the others will not show up at all.

C. Aggregation Accuracy

We now evaluate the accuracy of random walk approxi-

mation. We compare random walk-based FA and BA, with

the power method-based aggregation, which aggregates over

PPVs generated by the power method. We conduct the power

iteration until the maximum difference between any entries of

two successive vectors is within 10−6. Since the power method

is time consuming, this test is done on three small graphs:

Customer Subgraph is a subgraph of Customer with 5,000

vertices and 14,735 edges; DBLP 2010 is the DBLP network

that spans from January 2010 to March 2010, with 12,506

vertices and 19,935 edges; RMAT 3K is a synthetic graph

generated by the GTgraph toolkit, with 3,697 vertices and

7,965 edges. All three small graphs are treated as independent

graphs. Accuracy is defined as the number of vertices, whose

FA (or BA) approximate q-score falls in between [−ǫ,+ǫ] of

its q-score computed by the power method, divided by the total

number of vertices. We then compute the average accuracy

over all the queries. The mean accuracy with standard error

bars is shown in Figure 9 (ǫ = 0.03). We vary the number of

random walks performed on each vertex. Both FA and BA are

shown to empirically produce good accuracy with high mean

and low standard error. Since the power method is very slow,

hereinafter we apply FA with 2K random walks per vertex on

larger graphs to provide “ground truth” q-scores.

D. Forward vs. Backward Aggregation

We now compare forward and backward aggregation using

recall, precision and runtime.

1) Recall and Runtime: Recall is defined as the number of

iceberg vertices retrieved by gIceberg, divided by the total

number of iceberg vertices, i.e.,
∣

∣{v|Pq(v) ≥ θ, P̃q(v) ≥
θ−ǫ}

∣

∣/
∣

∣{v|Pq(v) ≥ θ}
∣

∣, where Pq(v) and P̃q(v) are true and

approximate q-scores, respectively. The effectiveness of pivot

vertex, approximate q-score bounding and pruning in pivot

vertex-based FA (PFA) is also evaluated. In PFA, 150 random
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Fig. 10. Forward Aggregation vs. Backward Aggregation: Recall and Runtime Comparison
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Fig. 11. Forward Aggregation vs. Backward Aggregation: Precision Comparison

walks are applied on each pivot vertex, while R random

walks are applied on the rest. Figure 10 shows the recall

and runtime for Customer and DBLP. We plot the average

recall over all queries with error bars on each point. The

first column shows how recall changes with ǫ, for R = 500;

the second column shows how recall changes with R, for

ǫ = 0.03. We can observe that: (1) Both FA and PFA yield

high recall and BA yields satisfying recall when R is ≥ 500.

The approximation captures most of the real iceberg vertices.

(2) The standard error across various queries is small for all

the methods, showing the performance is consistent and robust

to various queries. (3) Recall increases with ǫ and R, which is

as expected. (4) It is reasonable that PFA produces better recall

than FA when R ≤ 150, even though PFA uses approximate q-

score bounding. This is because for all R values, 150 random

walks are always applied on pivot vertices in PFA. Thus when

R ≤ 150, more random walks are used in PFA than in FA.

Runtime comparison in Figure 10 shows that BA signifi-

cantly reduces the runtime. When R is large, PFA reduces the

runtime of FA via pivot vertex and q-score bounding. Since the

pivot vertices use 150 random walks, it is expected for PFA

to cost more time than FA when R is small. When R = 100,

TABLE II
PIVOT VERTEX INDEXING COST

Data Sets Customer DBLP RMAT 500K

Time (Hours) 0.176 0.162 1.230

Index/Graph Size (MB) 8.48/46.53 4.75/91.68 9.24/53.99

PFA is still faster than FA, due to effective pruning. Table II

shows that it takes a reasonable amount of offline computation

to select pivot vertices. To sum up, BA still yields good recall

while reducing the runtime. FA is preferred over BA when

higher recall is desired.

2) Precision: Precision is defined as the number of iceberg

vertices retrieved by gIceberg, divided by the total number

of retrieved vertices, i.e.,
∣

∣{v|Pq(v) ≥ θ, P̃q(v) ≥ θ −
ǫ}
∣

∣/
∣

∣{v|P̃q(v) ≥ θ − ǫ}
∣

∣. Figure 11 shows the curves of

the average precision over all queries with error bars for

Customer and DBLP. We can see that: (1) FA and PFA yield

better precision than BA. When R = 2000, all the methods

yield decent precision. (2) The standard error is small for all

the methods, showing the performance is consistent across

queries. (3) Precision decreases with ǫ and increases with R
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Fig. 12. Attribute Distribution Test

as expected. (4) As previously analyzed, it is reasonable for

PFA to produce better precision than FA when R ≤ 150.

We can see that BA is much faster than FA and BA yields

good recall when R ≥ 500. However, the precision of BA

is not satisfactory unless R ≥ 2000. FA overall yields better

precision than BA. Therefore a fast alternative to achieve both

good recall and precision would be: (1) apply BA to retrieve

most real iceberg vertices with good recall; and then (2) apply

FA on those retrieved vertices to prune out the “false positives”

to further achieve good precision.

E. Attribute Distribution

We now test the impact of attribute distribution on the

aggregation performance. To customize the attribute distri-

bution, a synthetic R-MAT graph with 514,632 vertices and

2,998,960 edges is used (R-MAT 500K). Two tests are done:

(1) We customize the percentage of the black vertices, which is

computed as |Vq|/|V |. Given a query attribute q, we randomly

distribute it into the graph. The set of black vertices is Vq . (2)

We customize the skewness of the black vertex distribution.

The attribute q can be randomly dispersed without any specific

patterns, or concentrated in certain regions. To instantiate this

idea, we randomly select a set of root vertices, and randomly

assign q to a certain number, ω, of vertices within each root’s

close neighborhood. Let |Vr| be the total number of roots. We

have ω ∗ |Vr| = |Vq|. If |Vq| is fixed, by tuning ω and |Vr|, we

can control the skewness of the attribute distribution. A higher

ω indicates a higher skewness. We set ǫ = 0.05, R = 300 for

FA and PFA, and R = 1200 for BA.

For percentage test, 50 queries are randomly generated

for each percentage. Figure 12(a) plots the mean recall with

standard error. The percentage varies from 0.1% to 10%. All

three methods yield good recall with small standard errors.

The recall slightly decreases when the percentage increases.

Figure 12(b) shows that the runtime of BA increases with

|Vq|/|V |, which is as expected. BA is much faster, even when

its random walk number is four times that of FA and PFA.

For skewness test, 50 queries are randomly generated for

each ω. Figure 12(c) plots the mean recall with standard error.

The number of black vertices concentrated locally surrounding

each root vertex, ω, changes from 10 to 100. The black vertex

number is |Vq| = 50K . All the methods yield good recall with

small standard errors. PFA yields slightly worse recall, due

to approximate q-score bounding and pruning. Figure 12(d)

shows the BA runtime is almost constant because |Vq| is

constant and BA is significantly faster.

These figures show that FA/BA are not sensitive to the

skewness in terms of recall and runtime. BA is sensitive to

the percentage of black vertices in terms of runtime, but not

sensitive in terms of recall.

F. Scalability Test

As shown in previous experiments, BA is much more effi-

cient than FA and PFA. We further demonstrate how scalable

BA is on large graphs. A set of R-MAT synthetic graphs

with |V | ={2M , 4M , 6M , 8M , 10M} and |E| ={8M ,

16M , 24M , 32M , 40M} are generated. The percentage of

black vertices is 0.5% for all. The skewness of the attribute

distribution, ω, changes from 10 to 100. We set ǫ = 0.05 and

R = 250 for BA. Figure 13(a) plots the mean recall of BA with

standard errors across all the queries. BA yields good recall

on all the graphs and the recall is not sensitive to attribute

distribution skewness. Figure 13(b) shows that the runtime of

BA is approximately linear to the graph size. In conclusion,

BA exhibits good scalability over large graphs. FA and PFA do

not scale as well as BA. It takes them a few hours to return on

large graphs. Therefore, we consider BA as a scalable solution

for large graphs with decent recall. If higher recall is desired,

users can choose FA instead of BA.
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Fig. 13. BA Scalability Test

VIII. RELATED WORK

Graph iceberg analysis is related to the following areas.

Iceberg cube and graph OLAP. In multidimensional

OLAP [23], an iceberg cube contains cells whose measure

satisfies a threshold [4], [23]. Existing iceberg cubing methods

include top-down methods, bottom-up methods, integration

methods [23], [24], etc. Iceberg analysis on graphs has



been under-explored due to the absence of dimensionality in

graph data. The first work to place graphs in a rigid multi-

dimensional and multi-level framework is [4]. The objective

and results in [4] are substantially different from those in this

paper. With a distinct focus on iceberg analysis, we define the

concept of graph icebergs and propose scalable solutions.

Graph aggregation. Graph aggregation is to summarize

or aggregate networks to form a hierarchy. SNAP operations

were introduced in [2] to consistently merge nodes and edges

with respect to a predefined hierarchy. When such hierarchy

is unknown, graph summarization can be achieved via graph

clustering [25]. A local neighborhood aggregation framework

was proposed in [5], which finds the top-k vertices with the

highest aggregation values over their neighbors. Our work

extends [5] by incorporating local proximities to the target

attribute, into the aggregation.

Graph anomaly detection. Anomaly detection has been

studied in graph-based data [3], [26], [27]. [26] proposed both

anomalous substructure detection and anomalous subgraph

detection. [3] discovered several new rules in density, weights,

ranks and eigenvalues that govern local neighborhoods and

used these rules for anomaly detection. gIceberg instead

focuses on retrieving graph vertices interesting to a certain

query via aggregation. There is a distinct difference between

graph anomaly and graph iceberg. However, the anomaly score

of a vertex can be treated as its attribute value. Thus, graph

anomaly detection can be used in gIceberg to find icebergs

with many abnormal close neighbors.

Densest subgraph finding. In traditional densest subgraph

studies, the subgraph density is defined as the average vertex

degree of the subgraph [28], [29]. The densest k-subgraph

(DkS) problem finds the densest subgraph of k vertices,

which is NP-hard [30]. Most of these studies only consider

graph connectivity. [6] introduces the novel problem of finding

cohesive patterns. A cohesive pattern is a connected subgraph

whose density exceeds a given threshold and has homogeneous

feature values. What makes gIceberg different from [6] is that

the iceberg regions discovered via clustering iceberg vertices

include, but not limited to, dense regions. If an edge-sparse

region contains a high percentage of black vertices, it will

likely form an iceberg region as well, since the vertices within

will have high q-scores.

Local clustering. Local clustering finds a cluster containing

a given vertex without looking at the whole graph [12], [31]. A

core method called Nibble was proposed in [31]. By using

the personalized PageRank [11] to define the nearness, [12]

introduced an improved version, PageRank-Nibble. gIce-

berg can be combined with standard graph clustering tech-

niques to find iceberg regions. By aggregating over PPVs to

define the nearness between a vertex and an attribute, gIce-

berg considers both vertex attributes and edge connectivities.

IX. CONCLUSIONS

This paper introduces a novel concept, graph iceberg, which

extends iceberg queries to vertex-attributed graphs and identi-

fies interesting vertices that are close to an attribute using an

aggregate score. A scalable framework, gIceberg, is proposed

with two aggregation schemes: forward and backward aggrega-

tion. Optimization techniques are designed to prune unpromis-

ing vertices and reduce aggregation cost. Experiments on real-

world and synthetic large graphs show the effectiveness and

scalability of gIceberg. Future work includes finding icebergs

incrementally on time-evolving graphs, and discovering other

types of icebergs such as paths, trees, and subgraph patterns.
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APPENDIX

Proof of Theorem 1:

Proof: For each random walk Wi(i = {1, . . . , R}), let

Xi be a random variable such that

Xi =

{

1, if random walk Wi ends at vertex x,

0, otherwise.

Thus we have p̃v(x) = (ΣiXi)/R. According to the findings

in [16], pv(x) = E[p̃v(x)]. From the definition of Xi, we have

Pr[Xi ∈ [0, 1]] = 1, and Xi(i = {1, . . . , R}) are independent

variables, therefore according to Hoeffding Inequality, we can

derive

Pr[
ΣiXi

R
− E[

ΣiXi

R
] ≥ ǫ] ≤ exp{−

2(Rǫ)2

Σi=R
i=1 (1 − 0)2

}

≤ exp{−2Rǫ2}.

Therefore, we have Pr[p̃v(x) − pv(x) ≥ ǫ] ≤ exp{−2Rǫ2}
and Pr[|p̃v(x) − pv(x)| ≥ ǫ] ≤ 2 exp{−2Rǫ2}.

Proof of Theorem 2:

Proof: Recall that a vertex which contains attribute q
is called a black vertex. For each random walk Wi(i =
{1, . . . , R}), let Yi be a random variable such that

Yi =

{

1, if random walk Wi ends at a black vertex,

0, otherwise.

Thus we have P̃q(v) = (ΣiYi)/R and Pq(v) = E[(ΣiYi)/R].
According to the definition of Yi, Pr[Yi ∈ [0, 1]] = 1, and

Yi(i = {1, . . . , R}) are independent variables. Therefore,

according to Hoeffding Inequality, we can derive

Pr[
ΣiYi

R
− E[

ΣiYi

R
] ≥ ǫ] ≤ exp{−

2(Rǫ)2

Σi=R
i=1 (1− 0)2

}

≤ exp{−2Rǫ2}.

Similarly, we have Pr[|P̃q(v)−Pq(v)| ≥ ǫ] ≤ 2 exp{−2Rǫ2}.

Proof of Theorem 5:

Proof: Since dv

1−c
(P̃q(v) − c1q∈L(v)) < θ1 − ǫ, we have

P̃q(v) <
(1−c)(θ1−ǫ)

dv
+ c1q∈L(v). From Theorem 2, we know

Pr[Pq(v) − ǫ ≤ P̃q(v) ≤ Pq(v) + ǫ] ≥ 1 − 2 exp{−2Rǫ2}.

Thus Pr[Pq(v) ≤ P̃q(v) + ǫ < (1−c)(θ1−ǫ)
dv

+ c1q∈L(v) + ǫ] ≥
1−2 exp{−2Rǫ2}. Based on θ1 = θ−dvǫ/(1−c)+ǫ, we can

derive Pr[ dv

1−c
(Pq(v)− c1q∈L(v)) < θ] ≥ 1− 2 exp{−2Rǫ2}.

So from Corollary 2, Pr[Pq(x) < θ] ≥ 1− 2 exp{−2Rǫ2}.

Proof of Theorem 6:

Proof: Let B = c(1q∈L(v)−1q∈L(u)du/dv)+(1− c)(1−
σv). Since P̃q(u)du/dv + c(1q∈L(v) − 1q∈L(u)du/dv) + (1−

c)(1 − σv) < θ2 − ǫ, we have P̃q(u) < dv(θ2−ǫ−B)
du

. From

Theorem 2, we know Pr[Pq(u) − ǫ ≤ P̃q(u) ≤ Pq(u) +
ǫ] ≥ 1 − 2 exp{−2Rǫ2}. Thus Pr[Pq(u) ≤ P̃q(u) + ǫ <
dv(θ2−ǫ−B)

du
+ ǫ] ≥ 1 − 2 exp{−2Rǫ2}. Based on θ2 = θ −

duǫ/dv + ǫ, we can derive Pr[Pq(u)du/dv + B < θ] ≥ 1 −
2 exp{−2Rǫ2}. So from Theorem 4, Pr[Pq(v) < θ] ≥ 1 −
2 exp{−2Rǫ2}.

Proof of Theorem 7:

Proof: For any vertex v, for each random walk W x
i (i =

{1, . . . , R}, x ∈ Vq) starting from black vertex x, let Zx
i be a

random variable such that

Zx
i =

{

1, if random walk W x
i ends at a v,

0, otherwise.

Thus we have p̃x(v) = (ΣiZ
x
i )/R. px(v) = E[(ΣiZ

x
i )/R].

By Equation (7), we have p̃v(x) =
dx

dv
(ΣiZ

x
i )/R and pv(x) =

E[dx

dv
(ΣiZ

x
i )/R]. We therefore can further derive

P̃q(v) = Σx∈Vq
p̃v(x) = Σx∈Vq

(dx
dv

(ΣiZ
x
i )/R

)

= Σx∈Vq
Σi

dxZ
x
i

dvR
,

Pq(v) = E[Σx∈Vq
pv(x)] = E[Σx∈Vq

Σi

dxZ
x
i

dvR
].

Let Ax
i =

dxZ
x
i

dvR
. Ax

i is a random variable such that Pr[Ax
i ∈

[0, dx

dvR
]] = 1 and Ax

i (i = {1, . . . , R}, x ∈ Vq) are inde-

pendent from each other. We have P̃q(v) = ΣxΣiA
x
i and

Pq(v) = E[ΣxΣiA
x
i ]. According to Hoeffding Inequality,

Pr[P̃q(v)− Pq(v) ≥ ǫ] = Pr[ΣxΣiA
x
i − E[ΣxΣiA

x
i ] ≥ ǫ]

≤ exp{−
2ǫ2

Σx∈Vq
Σi=R

i=1
d2
x

d2
vR

2

} ≤ exp{−
2Rd2vǫ

2

Σx∈Vq
d2x

}.

Similarly Pr[|P̃q(v) − Pq(v)]| ≥ ǫ] ≤ 2 exp{−
2Rd2

vǫ
2

Σx∈Vq d
2
x
}.


