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ABSTRACT
Given a large real-world graph where vertices are associated
with labels, how do we quickly find interesting vertex sets
according to a given query? In this paper, we study label-
based proximity search in large graphs, which finds the top-k
query-covering vertex sets with the smallest diameters. Each
set has to cover all the labels in a query. Existing greedy al-
gorithms only return approximate answers, and do not scale
well to large graphs. We propose a novel framework, called
gDensity, which uses density index and likelihood ranking to
find vertex sets in an efficient and accurate manner. Promis-
ing vertices are ordered and examined according to their
likelihood to produce answers, and the likelihood calcula-
tion is greatly facilitated by density indexing. Techniques
such as progressive search and partial indexing are further
proposed. Experiments on real-world graphs show the effi-
ciency and scalability of gDensity.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms

Keywords
Graph mining, Proximity search, Indexing

1. INTRODUCTION
Graphs and networks can model various types of interac-

tions in a myriad of applications [12, 15, 18]. They are used
to encode complex relationships such as chemical bonds, en-
tity relations, social interactions, and so on. In contempo-
rary graphs, vertices and edges are often associated with
attributes. While searching the graphs, what is interesting
is not only the connectivity, but also the attributes, such as
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labels and weights. Figure 1 shows a graph where vertices
contain numerical labels. Consider a succinct yet fundamen-
tal graph query formula: given a set of labels, find vertex
sets covering these labels and rank the sets by their connec-
tivity. Viable connectivity measures include diameter, edge
density, and minimum spanning tree. In Figure 1, if we want
to find vertex sets that cover labels {1, 2, 3}, and the diam-
eter of a vertex set is its longest pairwise shortest-path, we
can return S3, S1 and S2 in ascending order of diameters.

Figure 1: Label-Based Proximity Search

Applications of such a setting abound. The vertex la-
bels can represent movies recommended by a user, functions
carried by a gene, skills owned by a professional, and so
on. Such queries help solve various interesting problems in
real-world graphs: (1) in a protein network where vertices
are proteins and labels are their annotations, find a set of
closely-connected proteins with certain annotations; (2) in
a collaboration network where vertices are experts and la-
bels are their skills, find a well-connected expert team with
required skills [18]; (3) in an intrusion network where ver-
tices are computers and labels are intrusions they initiate,
find a set of intrusions that happen closely together . The
list of applications continues: finding a group of close friends
with certain hobbies, finding a set of related movies covering
certain genres, finding a group of well-connected customers
interested in certain products, and many others.

We study label-based graph proximity search, to find the
top-k vertex sets with the smallest diameters, for a query
containing distinct labels. Each set covers all the labels in
the query. The advantages of using diameter as a measure
are shown in [16]. Graph proximity query is a general and
simple way to query graphs. Lappas et al. [18] studied a
similar problem called Diameter-Tf for expert team for-
mation and adopted a greedy algorithm, RarestFirst, to
return a 2-approximate answer (the returned set has a di-



ameter no greater than two times of the optimal diameter).
Diameter-Tf is NP-hard [18]. In this paper, we propose
a scalable solution to find top-k answers efficiently in large
graphs, for queries with moderate sizes. Our goals are: (1)
finding the exact top-k answers, not approximate answers;
(2) designing a novel graph index for fast query processing.
Other similar studies include [16] and [8]. Kargar and

An [16] studied finding the top-k r-cliques with smallest
weights, where an r-clique is a set of vertices covering all the
input keywords and the distance between each two is con-
strained. Two algorithms are proposed: branch and bound
and polynomial delay. The former is an exact algorithm, but
it is slow and does not rank the answers; the latter ranks the
answers, but is a 2-approximation. Gajewar and Sarma [8]
studied the team formation problem with subgraph density
as the objective to maximize and focused on approximation
algorithms. The problem definition is different in our paper
and we aim for exact and fast solutions.
A naive approach is to enumerate all query-covering ver-

tex sets, linearly scan them and return the top-k with the
smallest diameters. This is costly for large graphs. It is de-
sirable to have a mechanism to identify the most promising
graph regions, or local neighborhoods, and examine them
first. If a neighborhood covers the query labels, and mean-
while has high edge density, it tends to contain vertex sets
with small diameters that cover the query. We propose a
framework, called gDensity, to address the proximity search
problem using this principle. Empirical studies on real-world
graphs show that gDensity improves the query performance
over competing methods.
Our contributions. (1) We introduce density index in

graphs and the workflow to answer graph proximity queries
using such index. (2) We demonstrate that if the neighbor-
hoods are sorted and examined according to the likelihood,
the search time can be reduced. (3) We propose partial
indexing techniques to significantly reduce index size and
index construction time, with negligible loss in query per-
formance. (4) Empirical studies on real-world graphs show
that gDensity is effective and scalable.

2. PRELIMINARIES
For a vertex-attributed graph G = (V,E,L), each vertex

is attached with a set of labels from L = {α1, . . . , αl}. L(u)
denotes the label set of vertex u. For the ease of presenta-
tion, we focus on un-directed and un-weighted graphs. How-
ever, the proposed framework can be extended to directed
and weighted graphs as well.

Definition 1 (Cover). Given a vertex-attributed graph
G = (V,E,L), a vertex set S ⊆ V , and a query Q ⊆ L, S
“covers” Q if Q ⊆

⋃

u∈S L(u). S is also called a query cov-
ering vertex set. S is a minimal cover if S covers Q and no
subset of S covers Q.

Definition 2 (Diameter). Given a graph G = (V,E)
and a vertex set S ⊆ V , the diameter of S is the maximum of
the pairwise shortest distances of all vertex pairs in S, i.e.,
maxu,v∈S{dist(u, v)}, where dist(u, v) is the shortest-path
distance between u and v in G.

The diameter of a vertex set S, denoted by diameter(S),
is different from the diameter of a subgraph induced by S,
since the shortest path between two vertices in S might not
completely lie in the subgraph induced by S.

Problem 1 (Graph Proximity Search). Given a ver-
tex attributed graph G = (V,E,L) and a query Q containing
q labels (|Q| = q), label-based graph proximity search finds
the top-k vertex sets {S1, S2, . . . , Sk} with the smallest di-
ameters. Each set Si is a minimal cover of Q.

In many applications, it might not be useful to generate sets
with large diameters, especially for graphs exhibiting the
small-world property. One might apply a constraint such
that diameter(Si) does not exceed a threshold.
RarestFirst is a greedy algorithm proposed by [18] that

approximates the top-1 answer. First, RarestFirst finds
the rarest label in query Q that is contained by the smallest
number of vertices in G. Secondly, for each vertex v with
the rarest label, it finds its nearest neighbors that contain
the remaining labels in Q. Let Rv denote the maximum
distance between v and these neighbors. Finally, it returns
the vertex with the smallest Rv, and its nearest neighbors
containing the other labels in Q, as an approximate top set.
RarestFirst yields a 2-approximation in terms of diameter,
i.e., the diameter of the top set found by RarestFirst is no
greater than two times that of the real top set.
RarestFirst can be very fast if all pairwise shortest dis-

tances are pre-indexed. This is costly for large graphs. gDen-
sity does not have such prerequisite. Besides, the goal of
gDensity is finding the real top-k answers (not approximate
answers). gDensity works well for queries with small-diameter
answers, which are common in practice. For small graphs
where all pairwise shortest distances can be pre-indexed, or
for some difficult graphs where optimal solutions are hard to
derive, RarestFirst could be a better option. In Section 8,
we implement a modified top-k version of RarestFirst us-
ing the proposed progressive search technique, whose query
performance is compared with gDensity.

2.1 Cost Analysis and Observations
The naive solution in Section 1 scales poorly to large

graphs because: (1) It entails calculating all-pairs shortest
distances. It takes O(|V |3) time using the Floyd-Warshall
algorithm and O(|V ||E|) using the Johnson’s algorithm. (2)
It examines all query-covering sets without knowing their
likelihood to be a top-k set. The time complexity is O(|V |q),
with q being the size of the query.

An alternative approach is to examine the local neighbor-
hoods of promising vertices, and find high-quality top-k can-
didates quickly. The search cost is the number of vertices
examined times the average time to examine each vertex.
It is important to prune unpromising vertices. A possible
pruning strategy is: let d∗ be the maximum diameter of the
current top-k candidates. d∗ decreases when new query cov-
ers are found to update the top-k list. d∗ can be used to
prune vertices which do not locally contain covers with di-
ameter < d∗. gDensity instantiates such idea using nearest
label pruning and progressive search, to quickly prune ver-
tices which are unable to produce qualified covers. The key
is to find vertices whose neighborhoods are likely to pro-
duce covers with small diameters, so that the diameter of
the discovered top-k candidates can be quickly reduced.

Definition 3 (d-Neighborhood). Given a graph G =
(V,E,L) and a vertex u in G, the d-neighborhood of u,
Nd(u), denotes the set of vertices in G whose shortest dis-
tance to u is no more than d, i.e., {v|dist(u, v) ≤ d}.



Figure 2: d-Neighborhood Example

Intuitively, the d-neighborhood of u, Nd(u), can be re-
garded as a sphere of radius d centered at u. Figure 2 shows
an example of the 1-neighborhood, 2-neighborhood and 3-
neighborhood of vertex u. For each vertex u in G, we have
to determine if its d-neighborhood is likely to generate ver-
tex sets with small diameters to cover the query. The key
question is: how do we estimate such likelihood?

Figure 3: Pairwise Distance Distribution Example

We propose density index to solve the likelihood estima-
tion problem. Figure 3 shows the intuition behind density
index. Assume there are two regions, i.e., the 3-neighborhoods
of vertices u and v. The distributions of pairwise shortest
distances in both regions are plotted in Figure 3. The hor-
izontal axis is the pairwise distance, which are 1, 2, 3 and
greater than 3. The vertical axis shows the percentage of
vertex pairs with those distances. Given a query Q, if both
regions exhibit similar label distribution, which one has a
higher chance to contain a query cover with smaller diame-
ter? Very likely u’s ! This is because there is a much higher
percentage of vertex pairs in u’s neighborhood that have
smaller pairwise distances. Density index is built on this in-
tuition. For each vertex, the pairwise distance distribution
in its local neighborhood is indexed offline, which will later
be used to estimate its likelihood online. Section 4 describes
our indexing techniques in depth.

3. PROXIMITY SEARCH FRAMEWORK
gDensity consists of the following components.

Density Index Construction: We create a histogram-
like profile for each vertex depicting the distribution of the
pairwise shortest distances in its d-neighborhood, for 1 ≤
d ≤ dI . dI is a user specified threshold.

Seed Vertex Selection: Instead of examining the en-
tire vertex set V , we only examine the neighborhoods of the
vertices containing the least frequent label in the query Q.
These vertices are called seed vertices. Since a qualified ver-
tex set must contain at least one seed vertex, we can solely
focus on searching the neighborhoods of seed vertices.

Likelihood Ranking: Seed vertices are examined ac-
cording to their likelihood to produce qualified vertex sets

in their local neighborhoods. Vertices with the highest like-
lihoods are examined first.

Progressive Search: We maintain a buffer, Bk, of the
top minimal query covers discovered so far. A sequential ex-
amination finds qualified vertex sets with diameters 1, 2, . . .,
until the top-k buffer is full (contains k answers). This
mechanism enables early termination of the search. Once
the top-k buffer is full, the algorithm stops, because all of
undiscovered vertex sets will have diameter at least as large
as the maximum diameter in the top-k buffer.

Nearest Label Pruning: Let d be the current diameter
used in progressive search. Once d is determined, gDensity
traverses seed vertices to find query covers with diameter
exactly as d. The value of d increases from 1 and is used
to prune seed vertices that are unable to generate qualified
covers. Such seeds have their nearest neighbor with any
query label further than d.

gDensity Algorithm. Algorithm 1 shows the overall work
flow of gDensity. In the following sections, we elaborate the
details regarding the above components.

Algorithm 1: gDensity Framework

Input: Graph G, indexing radius dI , query Q, k
Output: The top-k vertex sets with the smallest diameters
1 Indexing G from 1 to dI ;
2 α1 ← the least frequent label in Q;
3 Seed vertices Vα1

← the vertices with label α1;
4 Top-k buffer Bk ← ∅, d ← 1;
5 while true do
6 Compute the likelihood for all the seed vertices;
7 Rank the seeds decreasingly using the likelihood;
8 for each seed vertex in the ranked list do
9 if it is not pruned by the nearest label rule then

10 Check its d-neighborhood for minimal query
covers with diameter d;

11 Update Bk with discovered minimal covers;
12 if Bk is full then
13 return Bk;

14 d++;

4. INDEXING AND LIKELIHOOD RANK
In order to estimate the likelihood online fast, we propose

density indexing to pre-compute indices that reflect local
edge connectivity. How to utilize the density index to facil-
itate likelihood estimation is discussed in Section 4.2.

4.1 Density Index
Density indexing records the pairwise shortest distance

distribution of a local neighborhood. In order to main-
tain a succinct index structure, the density index is solely
based on topology. For each vertex u, we first grow its d-
neighborhood, Nd(u), using breadth-first search. The pair-
wise shortest distances for all vertex pairs in Nd(u) are then
calculated. Some pairwise distances might be greater than
d (at most 2d). Density index records the histogram of the
discrete distance distribution, i.e., the percentage of pairs
whose distance is h, for 1 ≤ h ≤ 2d, as shown in Figure 3.
Density index only needs to record the distribution, not all-
pairs shortest distances. Section 6 will discuss how to derive
density index approximately.



Let I be an indicator function and P (h|Nd(u)) be the
percentage of vertex pairs with distance h. We have

P (h|Nd(u)) =

∑

vi,vj∈Nd(u)
I(dist(vi, vj) = h)

∑

vi,vj∈Nd(u)
I(1)

. (1)

Users can reduce the histogram size by combining the per-
centage of pairs whose distance is greater than a certain
threshold ĥ, as in Eq. (2). Usually ĥ = d.

P (> ĥ|Nd(u)) =

∑

vi,vj∈Nd(u)
I(dist(vi, vj) > ĥ)

∑

vi,vj∈Nd(u)
I(1)

. (2)

Since the distribution can change with respect to the ra-
dius of the neighborhood, we build the histograms for vary-
ing d-neighborhoods of each vertex, with 1 ≤ d ≤ dI , where
dI is a user-specified indexing locality threshold. Figure 2
shows the neighborhoods of vertex u with different radii.
For each radius d, we build a histogram similar to Figure 3.
Intuitively, if Nd(u) contains a higher percentage of vertex
pairs with small pairwise distances and it also covers Q,
Nd(u) should be given a higher priority during search. This
intuition leads to the development of likelihood ranking.
Supplementary indices are also used to facilitate likelihood

ranking and nearest label pruning (Section 5.2). (1) For each
label αi in G, global label distribution index records the
number of vertices in G that contain label αi. (2) Inspired
by the indexing scheme proposed by He et al. [12], gDensity
further indexes, for each vertex in G, its closest distance to
each label within its d-neighborhood.
Since density index has histogram structure as in Figure 3,

the space cost of density index is Σd=dI
d=1 O(|V |d) = O(|V |d2I).

For index time, suppose the average vertex degree in G
is b, then for each vertex u, the expected size of its d-
neighborhood is O(bd). If we use all pairwise distances
within d ∈ [1, dI ] to build the density index, the total time
complexity will be O(|V |b2dI ). The index time might be
huge even for small dI . This motivates us to design partial
indexing (Section 6), which greatly reduces index time and
size, while maintaining satisfying index quality.

4.2 Likelihood Ranking
Given a query Q = {α1, α2, . . . , αq}, let α1 ∈ Q be the

label contained by the smallest number of vertices in G.
α1 is called the rarest or least frequent label in Q. Let
Vα1

= {v1, v2, . . . , vm} be the vertex set in G containing la-
bel α1. These vertices are referred to as the seed vertices. Al-
gorithm 1 shows that the d-neighborhoods of all seed vertices
will be examined according to their likelihood to produce
minimal query covers with diameter exactly as d, while d is
gradually relaxed. For each seed vertex vi(i = {1, . . . ,m}),
its likelihood depends on the pairwise distance distribution
of its d-neighborhood, Nd(vi). The likelihood reflects how
densely the neighborhood is connected and can be computed
from the density index.

4.2.1 Likelihood Computation
Definition 4 (Distance Probability). Randomly se-

lecting a pair of vertices in Nd(vi), let p(vi, d) denote the
probability for this pair’s distance to be no greater than d.
p(vi, d) can be obtained from the density index, P (h|Nd(vi)),

p(vi, d) =
d

∑

h=1

P (h|Nd(vi)). (3)

Figure 4: Minimal Cover Example

Definition 5 (Likelihood). Randomly selecting a ver-
tex set with q vertices in Nd(vi), let "(vi, d) denote the prob-
ability for this set’s diameter to be no greater than d. With
density index (Eq. (1)), "(vi, d) can be estimated as

"(vi, d) ∼ p(vi, d)
q(q−1)/2

∼
(

d
∑

h=1

P (h|Nd(vi))
)q(q−1)/2

(4)

If the diameter of a vertex set is no greater than d, all the
vertex pairs within this set must be at most d distance away
from each other. If we assume independency of pairwise
distances among vertex pairs, Eq. (4) can be obtained, given
that the vertex set has size q. Certainly, it is an estimation,
since pairwise distances should follow some constraints, such
as triangle inequality in metric graphs. For a given query
Q of size q, gDensity uses "(vi, d) as the likelihood to rank
all the seed vertices. Apparently, seed vertices whose local
neighborhoods exhibit dense edge connectivity tend to be
ranked with higher priority. With the presence of density
index, likelihood can be easily computed as in Eq. (4).

For all the seed vertices in Vα1
, we sort them in descending

order of "(vi, d) and find minimal query covers with diame-
ter d individually. For each seed vertex under examination,
we first perform (unordered) cartesian product across query
label support lists to get candidate query covers, and then
select minimal covers from those covers. Such approach as-
sures that all possible minimal query covers will be found
from each seed vertex’s d-neighborhood.

4.2.2 Cartesian Product and Query Covers
For each seed vertex vi with label α1, we generate a sup-

port vertex list for each label in the queryQ = {α1, α2, . . . , αq}
in vi’s d-neighborhood. Let nj be the size of the support list
for αj . Let πd(vi) denote the total number of possible query
covers generated by performing a cartesian product across
all label support lists, where each cover is an unordered ver-
tex set consisting of one vertex from each support list.

πd(vi) =
q
∏

j=1

nj . (5)

Not all such covers are minimal. In Figure 4, if Q =
{1, 2, 3}, three support lists are generated in a’s 1-neighorhood.
For example, label 1 has two vertices in its list, a and b.
One of the covers across the lists is {a, b, c}, which is not
minimal. From {a, b, c}, we shall generate 3 minimal cov-
ers, {a, b}, {b, c} and {a, c}. For each seed vertex, gDensity
scans all candidate covers and generates those minimal ones
to update the top-k list. Note that generating minimal cov-
ers from the supporting lists is an NP-hard problem itself.
Here we find the minimal covers in a brute-force manner. It



Figure 5: Pruning and Progressive Search Example

is a relatively a time-consuming process. However, with pro-
gressive search, which will be described later, we only need
to do this locally in a confined neighborhood. Experiment
results will show that gDensity still achieves good empirical
performance on large graphs.

5. PROGRESSIVE SEARCHANDPRUNING
Progressive search enables search to terminate once there

are k answers found. Nearest label pruning is used together
with progressive search to prune unpromising seed vertices.

5.1 Progressive Search
The search cost increases exponentially when d increases.

Instead of testing a large value of d first, we propose to
check neighborhoods with gradually relaxed radii. A top-k
buffer, Bk, is maintained to store the top vertex sets with the
smallest diameters found so far. We progressively examine
the neighborhoods with d = 1, d = 2, and so on, until
Bk is full. Such mechanism allows the search to terminate
early. For example, if k answers are found while checking
the 1-hop neighborhoods of all seed vertices, the process can
be terminated without checking neighborhoods with d ≥ 2.
In Figure 5, suppose the query is Q = {1, 2, 3}, and we
have three seed vertices {u, v, w}. Starting with d = 1, we
explore the 1-hop neighborhoods of all three, looking for
covers with diameter 1, which gives us 〈{w, i}, 1〉. Here,
〈{w, i}, 1〉 means the diameter of {w, i} is 1. Moving onto
d = 2, we explore the 2-hop neighborhoods of all the three
vertices (in dashed lines), seeking covers with diameter 2,
which gives us {〈{u, c, d}, 2〉, 〈{u, c, g}, 2〉, 〈{u, b, g}, 2〉}. If
k = 4, search process can terminate here.

5.2 Nearest Label Pruning
We further propose a pruning strategy called nearest label

pruning. Used together with progressive search, it is able to
prune unfavorable seeds from checking. Suppose the current
diameter used in progressive search is d. For each seed vertex
vi, we calculate its shortest distance to each label inQ within
its d-neighborhood, Nd(vi). If there is a label α ∈ Q such
that the shortest distance between a vertex with α and vi
is greater than d, we skip checking vi and its neighborhood,
since Nd(vi) is not able to generate a query cover with di-
ameter ≤ d. Furthermore, vi and the edges emanating from
it can be removed. For example in Figure 5, if Q = {1, 2, 3}
and at certain point d = 2. Four query covers have been
inserted into Bk together with their diameters, which are
{〈{w, i}, 1〉, 〈{u, c, d}, 2〉, 〈{u, c, g}, 2〉, 〈{u, b, g}, 2〉}. We no
longer need to check the neighborhood of vertex v. This is
because the shortest distance between v and label 2 is 3,
which is greater than the current diameter constraint d = 2.

Figure 6: Partial Materialization Example

6. PARTIAL INDEXING
Building the complete density index for large graphs can

be expensive. We propose partial indexing to build an ap-
proximate index using partial neighborhood information.

6.1 Partial Materialization
Using random sampling, partial materialization allows den-

sity index to be built approximately by accessing only a
portion of the local neighborhoods. For each vertex u to in-
dex: (1) only a subset of vertices in u’s d-neighborhood are
used to form an approximate neighborhood; (2) only a per-
centage of vertex pairs are sampled from such approximate
neighborhood to construct the partial density index. More
specifically, the following steps are performed.

(a) Given a vertex u and an indexing distance d, a sub-
set of vertices are randomly sampled from Nd(u). An ap-
proximate d-neighborhood, Ñd(u), consists of those sampled
vertices and their distances to u.

(b) Randomly pick a vertex v from Ñd(u).
(c) Get the intersection of Ñd(u) and Ñd(v), χd(u, v).

For a random vertex x in χd(u, v), sample the pair (x, v)
and record their distance as in Ñd(v).

(d) For a random vertex x in Ñd(u) but not in χd(u, v),
sample the pair (x, v) and record their distance as > d.

(e) Repeat Steps (b) to (d) until a certain percentage, p,
of vertex pairs are sampled from Nd(u).

(f) Draw the pairwise distance distribution using sampled
pairs to approximate the real density distribution in Nd(u).

Figure 6 (better viewed in color) shows an example. The
solid circles centered at vertices u and v are their actual 2-
neighborhoods. The white free-shaped region surrounding
u is its approximate 2-neighborhood, Ñ2(u); similarly, the
gray free-shaped region surrounding v is Ñ2(v). The region
with grid pattern circumscribed by a solid red line is the
intersection of both approximate neighborhoods, χ2(u, v).
Each sampled vertex x from u’s approximate 2-neighborhood
forms a pair with v, (x, v). If x is in the intersection,
χ2(u, v), the pair (x, v) is sampled with a pairwise distance
recorded as in Ñd(v); otherwise it is sampled with a pairwise
distance recorded as > d. A localized version of Metropolis-
Hastings random walk (MHRW) sampling [6, 9] is used to
sample vertices from Nd(u) (Step (a)).

6.2 Representative Vertices
Partial materialization reduces the indexing cost for an

individual vertex. To further reduce the indexing cost, we
can reduce the number of vertices to be indexed. The intu-
ition is: if two vertices u and v have similar local topological



Figure 7: Representative Vertex Example

structure, there is no need to build the density index for u
and v separately, given that the distance distributions in the
neighborhoods of u and v are similar. For example, in Fig-
ure 7, the 1-hop neighborhoods of vertices u and v overlap
each other to a great extent. The common adjacent neigh-
bors of u and v in Figure 7 are {a, b, c, d}, which is 66.7% of
u and v’s 1-neighborhoods. Can we build the density index
of v with the aid of the density index of u?
A simple strategy employed in gDensity is to use the den-

sity of u to represent that of v (or vice versa), if the per-
centage of common 1-hop neighbors of u and v exceeds a
certain threshold in both u and v’s neighborhoods. Let σ
denote such threshold. In this case, vertex u is considered as
the representative vertex of v. We only index those vertices
which are representatives of some others, and use their den-
sity index to represent others’. Such strategy quickly cuts
down the number of vertices to index, thus reduces the index
time and index size. As experimented in Section 8, σ ≥ 30%
would suffice to produce effective partial index, which still
yields good online query processing performance.

7. OPTIMALITY OF GDENSITY

Theorem 1 (Optimality of gDensity). For a query,
gDensity finds the optimal top-k answers. Partial indexing
and likelihood ranking affect the speed of query processing,
but not the optimality of the results.

Proof Sketch. Since seed vertices contain the least fre-
quent label in the query, all query covers contain at least
one seed vertex. Confining the search to the neighborhoods
of seed vertices does not leave out any answers. Progres-
sive search assures that the diameters of unexamined vertex
sets will be no less than the maximum diameter in the top-
k buffer. Therefore the final top-k answers returned will
have the smallest diameters. Indexing and likelihood rank-
ing identify “promising” seed vertices and guide the algo-
rithm to discover the top-k answers faster. If more promis-
ing seeds are ranked higher, the top-k buffer will be filled up
faster. It is possible for a seed vertex, whose neighborhood
contains good answers, to be ranked lower than other less
promising seeds. However, this would only affect the speed
of filling up the top-k buffer. It would not change the fact
that the top-k buffer contains the top-k smallest diameters.
Partial indexing further reduces the indexing cost by index-
ing only partial information. It approximates the indexing
phase, and will not affect the optimality of the query phase.
Therefore gDensity always returns the optimal answers.
The likelihood computed in Eq. (4) for ranking seed ver-

tices assumes independence among distances between ver-
tices, which might not be valid for some seeds due to pos-
sible skewed distribution. However, as long as it is valid

for some seed vertices, the top-k buffer can be quickly up-
dated with answers discovered surrounding those seeds, thus
speeding up the search. The goal of likelihood ranking is to
locate promising regions containing many potential answers
and fill up the top-k buffer quickly. Section 8.2.3 empirically
confirms the effectiveness of likelihood ranking.

We reiterate that partial indexing only affects the esti-
mated density and likelihood ranking. Only the speed of
the top-k search will be affected by partial indexing. Partial
indexing will not impair the optimality of gDensity in terms
of returning the top-k answers with the smallest diameters.

8. EXPERIMENTS
The empirical evaluation contains: (1) comparison be-

tween gDensity and the modified RarestFirst; (2) evalu-
ation of partial indexing; (3) scalability test of gDensity. All
experiments are run on a machine that has a 2.5GHz Intel
Xeon processor (only one core is used), 32G RAM, and runs
64-bit Fedora 8 with LEDA 6.0 [22].

8.1 Data Sets
DBLP Data. DBLP is a collaboration network in com-

puter science. Each vertex is an author and each edge is
a collaborative relation. We consider the keywords in the
paper titles of an author as vertex labels. The DBLP graph
used contains 387,547 vertices and 1,443,873 edges.

Intrusion Data. In this graph, each vertex is a com-
puter and each edge is an attack. A vertex has a set of la-
bels, which are intrusion alerts initiated by this computer.
There are 1035 distinct alerts. Intrusion alerts are logged
periodically. We use one daily data set (IntruDaily) with
5,689 vertices and 6,505 edges, and one annual data set (In-
truAnn) with 486,415 vertices and 1,666,184 edges.

WebGraph Data. Web graph (http://webgraph.dsi.
unimi.it/) is a collection of UK web sites. Each vertex is a
web page and each edge is a link. A routine is provided to
attach the graph with random integer labels following Zipf
distribution [20]. Five subgraphs are used, whose vertex
numbers are 2M, 4M, 6M, 8M and 10M, and whose edge
numbers are 9M, 16M, 23M, 29M and 34M. The 2M graph
is a subgraph of the 4M graph, and so on.

50 queries are generated for each graph used. Query time
is averaged over all the queries. Table 1 shows some query
examples. Indexing is conducted up to 3 hops for all the
graphs. If not otherwise specified, partial indexing is the de-
fault indexing. The vertex pair sampling percentage is 40%
and the 1-hop neighborhood similarity threshold in repre-
sentative vertex selection is σ = 30%.

8.2 gDensity vs. Baselines
8.2.1 Baselines
We discovered in our experiments that the original Rarest-

First method does not scale well to large graphs. Thus we
add a constraint D on the diameters of the top-k vertex
sets in RarestFirst, limiting the search to each seed’s D-
neighborhood. We further use progressive search to speed
up RarestFirst. Algorithm 2 outlines the customized top-
k RarestFirst. Another baseline method is a variant of
gDensity, called“gDensity w/o LR”, which removes likelihood
ranking from gDensity. All of the other components are still
kept in gDensity w/o LR. gDensity w/o LR examines the
seed vertices in a random order. The goal is to inspect the



Table 1: Query Examples
DBLP Graph

IDQuery ID Query
1 "Ranking", "Databases", "Storage" 4 "Intelligence", "TCP/IP", "Protocols"
2 "Bayesian", "Web-graphs", "Information" 5 "Complexity", "Ranking", "Router", "Generics"
3 "Mining", "Graph", "Stream" 6 "Image", "Allocation", "Statistical", "Multi-core"

Intrusion Graph
IDQuery
1 "HTTP_Fields_With_Binary", "HTTP_IIS_Unicode_Encoding", "MSRPC_RemoteActivate_Bo"
2 "FTP_Mget_DotDot", "HTTP_OracleApp_demo_info", "HTTP_WebLogic_FileSourceRead"
3 "Content_Compound_File_Bad_Extension", "HTTP_URL_Name_Very_Long", "HTTP_URL_Repeated_Dot"
4 "SMB_Startup_File_Access", "pcAnywhere_Probe", "HTTP_Viewsrc_fileread", "Failed_login-unknown_error"
5 "HTTP_Passwd_Txt", "DNS_Windows_SMTP_Overflow", "OSPF_Link_State_Update_Multicast", "POP_User"

Algorithm 2: RarestFirstWith Progressive Search

Input: Graph G, Query Q, diameter constraint D, k
Output: Top-k vertex sets with smallest diameters
1 α1 ← the least frequent label in Q;
2 while the top-k buffer is not full do
3 for d from 1 to D do
4 for each vertex v with α1 do
5 Nd(v) ← v’s d-neighborhood;
6 S ← {v and v’s nearest neighbors in Nd(v)

that contain other labels in Q};
7 Extract minimal covers from S;
8 for each minimal cover do
9 If it is not yet in the top-k buffer, and its

diameter ≤ D, insert it into the buffer
according to its diameter;

10 if the top-k buffer is full then
11 return top-k buffer;

actual effect of likelihood ranking. Both methods are used
for comparative study against gDensity.

8.2.2 Evaluation Methods
The comparison is done on two measures, query time (in

seconds) and answer miss ratio (in percentage). Rarest-
First could miss some real top-k answers since it is an ap-
proximate solution. Miss ratio is the percentage of real top-k
answers RarestFirst fails to discover. For example, if the
real top-5 all have diameter 2 and if 2 of the top-5 answers
returned by RarestFirst have diameter greater than 2, the
miss ratio is 2/5 = 40%. gDensity and gDensity w/o LR are
able to find all real top-k answers.
We also examine the impact of label distribution. There

is an interesting tradeoff here. If labels are densely dis-
tributed (the average number of vertices containing each la-
bel is high), each neighborhood might potentially contain
many answers and the algorithm stops early; if the labels
are sparsely distributed, the seed vertex list is shorter and
the candidate set for each seed is smaller. We thus design a
group of experiments where we synthetically regenerate la-
bels for graphs DBLP, IntruAnn and WebGraph 10M, under
certain label ratios. The ratio is measured as |L|/|V |, where
|L| is the total number of distinct labels in G. Each vertex
is randomly assigned one of those synthetic labels.

8.2.3 Query Time Comparison
Figure 8 shows the query time comparison of gDensity,

gDensity w/o LR and the modified RarestFirst. The left-

most column shows how the average query time changes with
k. The advantage of gDensity over the modified Rarest-
First is apparent. The effectiveness of likelihood ranking
is evident on DBLP and IntruAnn, where gDensity greatly
outperforms gDensity w/o LR. Likelihood ranking does not
work as well on WebGraph 10M. It is possible that Web-
Graph 10M does not contain many patterns or dense regions,
rendering it difficult to rank seed vertices effectively.

The remaining columns depict how the average query time
changes with the synthetic label ratio, |L|/|V |. The tradeoff
between dense (small label ratio) and sparse (large label
ratio) label distribution clearly shows on DBLP, where the
gDensity query time first goes up and then goes down. It
goes up because as label distribution becomes sparse, more
seeds and larger values of d need to be examined to find
the top-k, since each region contains less answers. It then
goes down because the seed vertex list gets shorter and the
set of candidate covers to check for each seed gets smaller.
RarestFirst sometimes outperforms gDensity because the
diameter constraint lets RarestFirst finish without finding
all the optimal top-k sets. In the next section, we will show
the percentage of answers missed by RarestFirst.

8.2.4 Query Optimality Comparison
Query optimality is measured by the answer miss ratio.

gDensity discovers the real top-k answers, thus the miss ra-
tio of gDensity and gDensity w/o LR will be 0. Figure 10
shows how the miss ratio of RarestFirst changes with k.
Miss ratio gradually increases with k. In the worst case,
RarestFirst misses 52.8% of the real top-k answers. On
average, the miss ratio is around 30%. Clearly, compared to
gDensity, RarestFirst suffers from the drawback of possibly
leaving out the optimal answers.

We also observe how miss ratio changes with the synthetic
label ratio, |L|/|V |, in Figure 9. RarestFirst again is disad-
vantageous in terms of top-k optimality. The average miss
ratios are 46.6%, 23.6% and 35.1% for synthetically labeled
DBLP, IntruAnn and WebGraph 10M, respectively.

8.3 Partial Indexing Evaluation
Partial indexing reduces cost by indexing a subset of ver-

tices using their approximate neighborhoods. We refer to
the alternative, indexing all vertices using their exact neigh-
borhoods, as “all indexing”. The query performances of
both indexing techniques are compared. Three thresholds
of representative vertex selection are used for partial index-
ing: σ = {10%, 30%, 50%}. Since all indexing is very time-
consuming for large graphs, we can only afford to conduct
the comparison on a small graph, IntruDaily .
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Figure 8: gDensity vs. Baseline Methods, Query Time
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As shown in Figure 11, the additional online query time
partial indexing induces over all indexing is almost negligi-
ble, especially when σ ≥ 30%. The moderate performance
margin between σ = 10% and σ ≥ 30% might be attributed
to the fact that there are not that many vertex pairs whose
neighborhood similarity falls between 10% and 30%.
Table 2 shows the indexing time (seconds) and index size

(MB) comparison. Partial indexing effectively reduces in-
dexing cost. The indexing cost increases with the represen-
tative vertex threshold, because a higher threshold means a
larger number of representative vertices to index.
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Figure 11: gDensity Partial vs. All Index: Query Time

8.4 gDensity Scalability Test
We conduct experiments on web graphs of increasing size

to show the scalability of gDensity. Table 3 shows how the
index time and size change when the graph increases from
2M to 10M vertices. Overall, the index time is satisfying
and reasonable. The largest graph only takes 3.9 hours to
index. The index size is no more than 30% of the graph size.
Most importantly, the index time and size are approximately
linear to the size of the graph. Therefore, partial indexing
exhibits satisfying scalability over large graphs.
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Figure 9: RarestFirst Miss Ratios vs. Synthetic Label Ratio

Table 2: Partial vs. All Index: Time & Size
Indexing Scheme Time (Seconds) Size (MB)

Partial Indexing, σ = 10% 6.959 0.013
Partial Indexing, σ = 30% 7.337 0.016
Partial Indexing, σ = 50% 7.452 0.019
All Indexing 533.243 0.312

Table 3: gDensity Scalability Test: Index Time & Size
Vertex # 2M 4M 6M 8M 10M

Index Time (Hours) 0.92 1.65 2.53 3.23 3.85
Graph Size (MB) 234 390 528 678 786
Index Size (MB) 72 123 174 222 259

Figure 12 shows how query time changes when the graph
size increases from 2M to 10M vertices, for various k values.
We can see that the query time gradually increases and is
still satisfying even for very large graphs. The query time is
contingent on a number of factors such as the graph struc-
ture, the graph size, the label distribution, the query, k, and
so on. Since the queries are randomly generated on each
of the web graphs, it is possible for a smaller graph to en-
counter a more difficult query that entails longer processing
time. Even for the same query, it is possible for it to be
processed faster in a larger graph, since more answers might
be found at an early stage. If we compare the runtime of
top-5 for WebGraph 2M, top-10 for WebGraph 4M, top-15
for WebGraph 6M, and top-20 for WebGraph 8M (i.e., the
value of k increases with the graph size), it is observed that
the runtime increases linearly. Overall, gDensity is scalable
with respect to the graph size.

9. RELATEDWORK
Proximity Search. Typical proximity search in social

networks includes link prediction [24], expert team forma-
tion [2, 8, 18, 26, 27]. The latter finds a team of experts
with required skills. Existing methods include generic algo-
rithms [26], simulated annealing [2], and so on. [18] adopts a
2-approximation algorithm to find a team of experts with the
smallest diameter, where all-pairs shortest distances need
to be pre-computed and no index structure is used to ex-
pedite the search. [8] presents approximation algorithms to
find teams with the highest edge density. Proximity search
is also studied in Euclidean space [1, 11], such as finding
the smallest circle enclosing k points. Since the diameter of
such a circle is not equal to the maximum pairwise distance
between the k points, even with mapping methods such as
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Figure 12: gDensity Scalability Test: Query Time

ISOMAP [25], the techniques for the k-enclosing circle prob-
lem can not be directly applied here. The points here also
do not contain label information.

Motif Finding in Graphs. Label-based graph proxim-
ity search is also related to the graph motif problem, intro-
duced by [17] in the bioinformatics field. [7] further investi-
gates three variants of the initial problem. A key difference
is that diameter is not used to rank the discovered motifs.

Ranked Keyword Search in Graphs. Ranked key-
word search in graphs [3, 12, 15] has focused on answers
structured as rooted-trees. An answer is ranked mainly by
the aggregate distances from the leaves to the root [12]. The
distance among leaves is not considered. gDensity ranks an
answer by its entire diameter. Finding subgraphs instead
of trees is also studied in [16, 19]. Finding r-cliques that
cover all the keywords is proposed in [16], which only finds
answers with 2-approximation. [19] finds r-radius Steiner
graphs that cover all the keywords.. [10] uses personalized
PageRank vectors to find answers in the vicinity of vertices
matching the query keywords in entity-relation graphs. [13]
proposes XKeyword for efficient keyword proximity search
in large XML graph databases. gDensity differs since it does
not require a schema on the graphs. gDensity focuses on the
diameter of a vertex set. and ensures optimality.

Top-k Query Processing. Top-k query processing is
also studied for RDBMS [4, 10, 23] and middleware [5, 14,
21]. Supporting top-k queries in SQL is proposed in [4].
In middleware, top-k query is abstracted as getting objects
with the top-k aggregate ranks from multiple data sources.
Our work is different since gDensity answers top-k queries
on a single source with graph data. Existing techniques for
RDBMS and middleware are no longer applicable.



10. CONCLUSIONS
In this paper, we study the label-based graph proximity

search problem, which finds the top-k query-covering ver-
tex sets with the smallest diameters. The proposed gDen-
sity framework introduces likelihood ranking of seed vertices
to speed up the search. Fast pruning and early stopping
are enabled by nearest label pruning and progressive search.
Density indexing is proposed for fast likelihood estimation.
Partial indexing is further proposed to reduce indexing cost.
Empirical studies show the efficiency and scalability of gDen-
sity. Our future works include: (1) extending gDensity to
weighted and directed graphs; and (3) extending gDensity
to handle other objective functions besides diameter.
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[22] K. Mehlhorn and S. Näher. LEDA: a platform for
combinatorial and geometric computing. Cambridge
University Press, 1999.

[23] L. Qin, J. X. Yu, L. Chang, and Y. Tao. Querying
communities in relational databases. In ICDE, pages
724–735, 2009.

[24] P. Sarkar, A. W. Moore, and A. Prakash. Fast
incremental proximity search in large graphs. In
ICML, pages 896–903, 2008.

[25] J. Tenenbaum, V. Silva, and J. Langford. A global
geometric framework for nonlinear dimensionality
reduction. Science, (5500):2319–2323.

[26] H. Wi, S. Oh, J. Mun, and M. Jung. A team formation
model based on knowledge and collaboration. Expert
Syst. Appl., 36(5):9121–9134, 2009.

[27] A. Zzkarian and A. Kusiak. Forming teams: an
analytical approach. IIE Transactions, 31(1):85–97,
1999.


