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Abstract: In recent years, a large amount of information has become available online in the form of web documents, social
networks, or blogs. Such networks are large, heterogeneous, and often contain a huge number of links. This linkage structure
encodes rich structural information about the topical behavior of the network. Such networks are often dynamic and evolve
rapidly over time. Much of the work in the literature has focused on classification either with purely text behavior or with
purely linkage behavior. Furthermore, the work in the literature is mostly designed for static networks. However, a given
network may be quite diverse, and the use of either content or structure could be more or less effective in different parts of
the network. In this paper, we examine the problem of node classification in dynamic information networks with both text
content and links. Our techniques use a random walk approach in conjunction with the content of the network to facilitate an
effective classification process. Our approach is dynamic, and can be applied to networks which are updated incrementally. Our
results suggest that an approach based on both content and links is extremely robust and effective. We also present methods
to perform supervised keyword-based clustering of nodes using this approach. We present experimental results illustrating the
effectiveness and efficiency of our classification approach. We also show that the approach is able to find effective and coherent
clusters. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 5: 16–34, 2012
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1. INTRODUCTION

In recent years, there has been an explosion of text
content on the web in a variety of forms. In addition to the
standard forms of content such as web pages, an enormous
amount of content may be found in the form of blogs,
wikis, and other forms of social media. Such networks are
often a challenge for mining algorithms because they often
contain both structure and content. Some examples of such
networks include author citation networks, coauthorship
networks, product databases with large amounts of text
content, and so on. Such networks are highly dynamic and
may be frequently updated over time. For example, new
nodes may constantly be created in the network, as new
postings are created in a blog network; similarly old nodes
may be deleted, as old postings are deleted. As a result the
structure of the network may be quite dynamic, and may
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vary over time. In the most general case, we model our
problem as a graph of nodes, each of which may contain
text content.

A key problem which often arises in these domains is
that of node classification [2,3]. The classification problem
arises in the context of many network scenarios in which
the underlying nodes are associated with content. In the
node classification problem, it is assumed that a subset of
the nodes in the network may be labeled. It is desirable to
use these labeled nodes in conjunction with the structure
and content for the classification of nodes which are
not currently labeled. For example, many blogs or other
network documents may naturally belong to specific topics
on the basis of their content and linkage patterns. However,
most such documents may not be formally associated with
labels in social networking scenarios because of a lack of
resources available for a human-centered labeling process.
In this paper, we will address the classification problem,
in which it is desirable to determine the categories of the
unlabeled nodes in an automated way with the use of both
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structure and content of the network. The presence of labels
on a subset of the nodes provides the implicit training data
which can be leveraged for learning purposes.

The node classification problem is particularly challeng-
ing in the context of very large, dynamic, and evolving
social and information networks. In particular, a number of
natural desiderata are applicable in the design of classifi-
cation algorithms in this scenario. These desiderata are as
follows:

• Social and information networks are very large, as
a result of which link classification algorithms need
to be efficient. This can be particularly challenging,
if we intend to use both text and links during the
classification process. The addition of text content
to the linkage information is responsible for a
considerable increase in the size of the underlying
network representation.

• Many such networks are dynamic, and are frequently
updated over time. As the structure of the network
may constantly change over time, the underlying
classification model may also change. Therefore, the
model needs to be efficiently updatable in real time
in order to account for such changes. Such a dynamic
model also needs to be easy to use, so that the end-
process of classification can be achieved without too
much overhead.

• Such networks are often noisy, as many of the
links and content features may not be relevant
to the classification process. In addition, different
portions of the network may be better suited to
different kinds of classification models. For example,
some portions of the network may be better classified
with structure, whereas other portions may be better
classified with content. We need to design a classifier,
which can make such decisions in a seamless way, so
that the appropriate parts of the network may be used
most effectively for the classification process.

The problem of classification is widely studied in the data
mining community [4]. The problem has been studied in the
context of both structural [5–7] and content-based [8–11]
analysis. Two natural choices can be used for classification
of content-rich networks:

• The most straightforward approach is to directly use
text classifiers in order to perform the classification.
A variety of text classifiers are available for this
purpose. A detailed evaluation of techniques for
text categorization may be found in Refs [10,11].
However, such an approach ignores the rich structural

information which is often available in the context of
a network.

• A second way to perform the classification is by
using the information which is latent in the underlying
link structure. For example, effective methods have
been proposed in Ref. [7] in order to perform
link-based classification. Similar techniques have
been used in Ref. [5] in order to label blogs
for classification. However, these methods fail to
leverage the information which is available in the
underlying content for classification purposes.

It is clear that both text and links encode important
information about the underlying network. Furthermore,
these provide different views of the underlying information.
For example, the text provides ideas about content,
whereas the linkage behavior provides information about
interconnectedness between different kinds of nodes, some
of which may be used for classification. The latter is
especially the case, when the content in a given node
is limited and the linkage information provides an idea
of the relationships of the test node with other labeled
nodes. On the other hand, the content can be used
to glean better classification insights when the linkage
structure is either sparse or not informative enough to
provide information about the classification behavior of
the underlying node. Therefore, it makes sense to examine
whether it is possible to combine text and linkage behavior
in order to perform robust classification, which works
more effectively in a generic scenario. Furthermore, such
an integration must be seamless, in that it should be
able to automatically use the most effective strategy in
a given scenario. This paper will propose a random walk
approach, which combines text and linkage behavior, and
show that it can be used in a seamless way in order to
perform more robust classification. We will refer to this
algorithm as DyCOS, which corresponds to the fact that
it is a DY namic C lassification algorithm with cOntent
and S tructure. Furthermore, the approach is dynamic, and
scalable to large networks, as it can be applied to large, and
rapidly updatable networks.

We also show that the technique can be used for
supervised keyword-based clustering of nodes in a social
network. A common application which often arises in social
networks is to create clusters (or communities) of nodes
which are related to specific keywords. As the text in such
social networks is quite sparse, it may often be the case
that such clusters cannot be effectively determined with
the use of pure keyword-based analysis, because many
relevant nodes may not directly contain the keyword itself.
As our approach uses the link structure in addition to the
content, it is able to create much more robust communities
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even when the text on the nodes is noisy and sparse.
Clusters are created effectively from the different nodes
with the use of the propagation paradigm introduced in
DyCOS. While a number of unsupervised techniques for
combining structure and content have been proposed in past
works, they cannot be used for supervised keyword-based
clustering. In many applications, such supervised clusters
may be more useful, especially when we have a rough idea
of the types of communities that need to be found in terms
of keywords.

This paper is organized as follows. We discuss related
works in the remainder of this section. In Section 2, we
introduce a dynamic random-walk model for classification
with text and links. Section 3 shows how DyCOS algo-
rithm leverages this model for the classification. We discuss
an application of this technique to the problem of super-
vised clustering in Section 4. The experimental results are
presented in Section 5. Section 6 presents the conclusions.

1.1. Related Work

The problem of text classification [8–11] has been
studied widely in the information retrieval literature.
Detailed surveys may be found in Refs [10,11]. In the
context of the web and social networks, text classification
poses a significant challenge, because the text is often
drawn from heterogeneous and noisy sources which are
often hard to model with a standardized lexicon. Some
of the earliest work on the use of linkage techniques to
enhance classification may be found in Ref. [12]. This work
uses the text content in adjacent web pages in order to model
the classification behavior of a web page. However, it is not
focussed on the problem of node-classification in a partially
labeled graph of documents.

The problem of node classification has also been studied
in the graph mining literature, and especially relational
data in the context of label or belief propagation [13–15].
Such propagation techniques are also used as a tool for
semisupervised learning with both labeled and unlabeled
examples [16]. A technique has been proposed in Ref.
[7], which uses link-based similarity for node-classification.
Recently, this technique has also been used in the context
of blogs [5]. However, all of these techniques use link-
based methods only. Some recent work has been done on
the clustering problem with content and links [17]. Another
work [6] discusses the problem of label acquisition in the
context of collective classification. Label acquisition is an
important problem, because it is required in order to provide
the base data necessary for classification purposes. A
method to perform collective classification of email speech
acts has been proposed in [18]. It has been shown that the
analysis of relational aspects of emails (such as emails in
a particular thread) significantly improves the classification

accuracy. It has also been shown in Refs [12,19] that the
use of graph structures during categorization improves the
classification accuracy of web pages. While these methods
provide a limited application of structural information, they
are not designed to work for dynamic networks which may
constantly evolve over time. This paper provides a first
approach to the problem of efficient and dynamic node
classification in a massive labeled network, where both text
and node labels are available for classification purposes.
Much of the work proposed recently is not applicable to the
case of massive information networks in a dynamic scenario
because of scalability issues. We will use carefully designed
summary structures which can efficiently perform such a
classification. We will show that the use of both sources in
the classification process provides an effective classification
technique in such massive networks. Furthermore, we
design our technique to work effective for massive and
dynamic networks which may constantly evolve over time.
We will show that our method will show considerable
improvements over other existing methods. For the case
of the clustering problem, a number of techniques have
been designed for unsupervised for combining content with
structure [17], though these methods are not designed for
text data, and they do not use supervision for the mining
process.

2. NODE CLASSIFICATION MODEL WITH TEXT
AND LINKS

We will first introduce some notations and definitions
which are relevant to the node classification problem. We
assume that we have a large network containing a set
of nodes Nt at time t . As, the approach is dynamic, we
use a time-subscripted notation Nt in order to denote the
changing nodes in the network. A node in Nt corresponds
to a structural node in the network along with the associated
text content. We also assume that a subset Tt of these nodes
Nt may be labeled. These nodes form the training nodes,
and they contribute both linkage and text information for
classification purposes. We assume that the nodes in Tt are
labeled from a total of k classes, which are drawn from the
set {1 . . . k}. As in the case of the node set Nt , the set Tt is
not static, but may dynamically change over time, as new
labeled nodes may be added to the network. For example,
either a new labeled node may be added to both Nt and Tt

or an existing node in Nt may be initially unlabeled (and
therefore not a part of the training data), but may eventually
be labeled, when new training information is received. In
the latter case, we add that node to Tt . Similarly, the set of
edges at time t is denoted by At . Furthermore, new labels
may be acquired for different nodes over time, as a result of
which the set Tt may change as well. Clearly, this dynamic
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setting is extremely challenging, because it implies that the
training model may change rapidly. The entire network is
denoted by Gt = (Nt ,At , Tt ) at a given time t .

In order to achieve our goal, the DyCOS approach will
construct a summary representation which is based on both
text and link structure. In order to perform the classifica-
tion, we will create a text-augmented representation of the
network, which is leveraged for classification purposes. We
will show how to implement this summary representation
efficiently, so that it is possible to use it effectively in a
network. Our broad approach is to construct an intuitive
random walk based approach on the network, in which both
text and links are used during the walk process for classi-
fication. The level of importance of text and links can be
either controlled by a user or inferred in an automated way,
as discussed below. As we intend to design classification
techniques which use the underlying content, it is useful
to first determine the words which are most discriminative
for classification purposes. The ability to select out a com-
pact classification vocabulary is also useful in reducing the
complexity and size of the model at a later stage. The aim
of picking only a small set of discriminative keywords is to
guide the classification process with a small number of key-
words for each node. For example, for a larger document
such as a web page or blog, the number of possible words
in the document may be as many as a few hundred or a
thousand. However, the aim of using the feature selection
process is to reduce it to a very small number.

The discriminative quantification of a given word from
the corpus is performed with the use of a well known
measure known as the gini-index. We dynamically maintain
a sample reservoir St of labeled documents in the collection,
and use them for the purposes of computing the gini-
index. For this purpose, we can use the reservoir sampling
algorithm discussed in Ref. [20]. From time to time,
we compute the gini-indices in order to compute the
discriminative power of the different words. The frequency
of updating the gini-indices can be either equivalent to
or less than the frequency the network is dynamically
updated. For a given word w, let p1(w) . . . pk(w), be the
relative fractional presence of the word w in the k classes.
Therefore we have:

k∑

i=1

pi(w) = 1. (1)

Let n1(w) . . . nk(w) be the number of pages in the k classes,
in the sample St which contain the word w, we estimate
pi(w) as follows:

pi(w) = ni(w)/

k∑

j=1

nj (w). (2)

Then, the gini-index G(w) for the word w is computed as
follows:

G(w) =
k∑

j=1

pj (w)2. (3)

The value of G(w) always lies in the range (0, 1). If the
word is evenly distributed across the different classes, then
the value of G(w) is closer to 0. On the other hand, if
the word w has a preponderance in one of the classes,
then the value of G(w) is closer to 1. Thus, words which
have a higher value of G(w) are more discriminative
for classification purposes. As a first step, we pick a set
Mt of the top m words which have the highest value of
G(w) and use them in order to construct our structural
node classification model. The set Mt represents the active
vocabulary which is useful for classification purposes. In
our current implementation (Section 5), Mt is updated
at the same pace as the dynamic network is updated.
Nonetheless, we note that Mt does not need to be updated
at each time instant t . Rather, it can be updated in batch
at specific instants in time, with a much less frequency
compared to that the network is updated. The discriminatory
indices of the words are analyzed periodically, and the most
discriminatory words are used for classification purposes.
These discriminative words are used in order to create a
new semibipartite representation of the network which is
useful for classification purposes.

2.1. The Semibipartite Content–Structure
Transformation

One of the goals of the DyCOS algorithm is to
create a model which can deal with the content and
links in a seamless way for the transformation process.
For this purpose, both the content and the original links
are transformed into a structural representation, which is
referred to as the semibipartite content–link transformation.
The set Mt provides a more compact vocabulary which
is used in order to create a semibipartite content–link
transformation. The semibipartite representation is a graph
in which one partition of nodes is allowed to have edges
either within the set, or to nodes in the other partition. The
other partition is only allowed to have edges to the first,
but it does not have any edges within the set. Therefore,
it is referred to as semibipartite, as only one of the two
node sets satisfies the bipartite property. The semibipartite
content–link transformation defines two kinds of nodes: (i)
The first kind are the structural nodes which are the same
as the original node set Nt . This set inherits edges from
the original network. (ii) The second kind of nodes are
the word nodes which are the same as the discriminative
vocabulary Mt .
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Fig. 1 The semibipartite transformation.

Then, we construct the semibipartite graph Ft = (Nt ∪
Mt , At ∪ A′

t ), in which Nt and Mt form the two sides
of the bipartite partition. The set At is inherited from
the original network, whereas A′

t is constructed on the
basis of word-presence in the text in different network
nodes. Specifically, an undirected edge exists between
the information network node i ∈ Nt , and the word node
j ∈ Mt , if the corresponding word is contained in the
information node i. Thus, the edges in At are within a
partition, whereas the edges in A′

t are across the partition.
An example of this transformation is illustrated in Fig. 1.
We have marked the nodes Nt , N ′

t , At , and A′
t in this

figure. The node set which corresponds to the structural
nodes has edges which are indicated by solid lines, whereas
the connections between structure and content nodes are
illustrated by dashed lines. Thus, a walk from one node to
another may use either solid or dashed lines. This provides a
way to measure proximity both in terms of link and content.
The idea of creating such a network is that structural nodes
are linked together based on proximity of contents. Thus,
if a pair of nodes share many words in common, there
are an equivalent number of ways of reaching one node
from the other in a random walk process. This ensures
that the greater the similarity in content, the more biased
the random walk process in visiting nodes with similar
content in a single walk. Thus, by associating the class label
with individual random walks, it is possible to propagate
the classes on the labeled nodes to the unlabeled nodes.
The ability to utilize such proximity in the context of a

classification process helps us combine links and content in
a seamless way for classification in terms of the structural
proximity in the new transformed network. While it is
possible to use n-grams rather than individual word nodes
for the transformation, we choose to use individual words
in order to maintain efficiency.

In addition, a number of data structures are required
in order to allow efficient traversal of the text and
linkage structure in our random-walk approach. These data
structures are as follows: (i) For each of the word nodes
w ∈ Mt , we maintain an inverted list containing the set
of node identifiers which contain the word corresponding
to w. We assume that the set of nodes pointed to by
word i is denoted by Pi . The set Pi is illustrated in
Fig. 1. (ii) For each of the original set of nodes Nt in the
network structure, we maintain an inverted list of words
contained in the corresponding document. The set of words
pointed to by node i is denoted by Qi . (iii) For each node
identifier, we maintain information about its class label,
if the node is labeled. Otherwise, we simply maintain the
meta-information that the node is not labeled.

We note that total size of all the inverted lists Pi for
different values of i is at most equal to the text size of
the collection, if it is represented in terms of only the
discriminative words. Similarly, the total size of all the
inverted lists Qi for different values of i is at most equal to
the discriminative text collection size. These inverted lists
can be updated easily during addition or deletion of nodes
to the collection. During addition or deletion of nodes, we
need to either add to or delete from inverted lists Pi , such
that word i is contained in the added or deleted node. We
also need to add (delete) an inverted list Qr corresponding
to the newly added (removed) node r . We note that this
incremental update process is extremely efficient, and can
be dynamically performed for a data stream. From time to
time, we may also want to adjust the word nodes, depending
upon the change in discriminatory behavior. In such cases,
we need to add or delete corresponding word nodes. The
process of updating the inverted lists is similar to the
previous case. The update process can also be efficiently
applied to a node, when the content within a node changes.
In this cases, the corresponding links between the structure
and content nodes need to updated.

We note that the complexity of this procedure is
essentially proportional to the sum of the number of links
that are added to the content–structure transformation
and the number of links which are deleted from the
content–structure transformation (because some of the
nodes no longer remain discriminative and are therefore
dropped from Mt ). In addition, we need to recompute the
gini-index for each node at each update which requires
O(|Mt | · k) time for a k-class problem. As the number
of nodes which are added to Mt far exceeds the number
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of nodes which are deleted in applications in most practical
applications in which the network size constantly increases
over time, we will focus on only the added links for
simplicity. Let ns be the number of nodes added to the
network since the last update, such that each node contains
a total of at most nr words. Then, at most nr · ns links
at added. Therefore, the total time-complexity of updating
the structure is approximately proportional to O(nr · ns +
|Mt | · k).

3. CLASSIFICATION WITH TEXT
AND LINK-BASED RANDOM WALKS

In this section, we describe the classification approach
of DyCOS. The use of both content and links during the
random walk process is critical in creating a system which
provides effective classification. Since random walks can
be used to define proximity in a variety of ways [21], a
natural approach is to construct proximity-based classifiers
which use the majority labels of random walk nodes for the
propagation process. Since the text is included within the
node structure of the semibipartite graph, it follows that a
random walk on this graph would implicitly use both text
and structural links during the classification process. The
starting node in this random walk is the unlabeled node in
Nt which needs to be classified. Of course, we would also
like to have a way to control the relative impact of text
and structural nodes during the classification process. We
note that a straightforward use of a random walk over the
semibipartite graph Ft may not be very effective, because
the walk can get lost by the use of individual word nodes in
the random walk. In order to be able to control this relative
importance, we will define the walk only over the structural
nodes with implicit hops over word nodes. Specifically, a
step in the random walk can be one of two types:

(i) The step can be a structural hop from one node in
Nt to another node in Nt . This is a straightforward
step from one node to the next with the use of
a link in the original graph. If such a link does
not exist, then the structural hop teleports to the
starting node.

(ii) The step can be a content-based multihop from
a node in Nt to another node in Nt . This step
uses the linkage structure between the structural
and word nodes during the hop. Thus, each hop
really uses an aggregate analysis of the word-
based linkages between one structural node in Nt

and another structural node in Nt . The reason for
this aggregate analytical multihop approach is to
reduce the noise which naturally arises as a result

of the use of straightforward walks over individual
word nodes in order to move from one structural
node to the other. This is because many of the
words in a given document may not be directly
related to the relevant class. Thus, a walk from
one structural node to the other with the use of a
single word node could diffuse the random walk
to less relevant topics.

We will discuss more details about how this content-
based multihop is computed slightly later. We use a
statistical analysis of the nodes encountered during the
random walk in order to perform the classification. A key
aspect here is to be able to control the importance of
structure and content during the hops. For this purpose, we
use a structure parameter ps . This parameter defines the
probability that a particular hop is a structural hop rather
than a content hop. When the values of ps is set at 1,
then it means that content is completely ignored during the
classification process. On the other hand, when the value
of ps is set at 0, then it means that only content is used
for classification. We will discuss more details about the
classification process below.

3.1. Classification Process

The process of classification uses repeated random walks
of length h starting at the source node. The random walk
proceeds as follows. In each iteration, we assume that
the probability of a structural hop is ps . Otherwise, a
content multihop is performed with probability (1 − ps).
By varying the value of ps , it is possible to control the
relative importance of link and content in the classification
process. While defining the length of a walk, a content-hop
is defined as a single hop in the same way as a structural
hop, even though a content walk is really performed
using analysis of intermediate word nodes. A total of l

such random walks are performed. Thus, a total of l · h

nodes are visited in the random walk process. These nodes
may either belong to a particular class, or they may not
be labeled at all. The most frequently encountered class
among these l · h nodes is reported as the class label. If
no labeled node is encountered through all random walks
(which is a very rare situation), DyCOS simply reports the
most frequent label of all nodes currently in the network.
This is specific to the current time stamp and does not
depend on the particular source node. A high-level pseudo-
code sketch of the classification algorithm is presented in
Algorithm 1.

Next, we will discuss the efficient implementation of
structural and content hops. This is done with the use of the
inverted indices which are available at the different nodes
of the graphs. At each node in the random walk process, we
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Data: Network Gt = (Nt, ,At Tt), number of random walks, l, walk length, h, structural

hop probability, ps

Result: Classification of Tt, accuracy, q

1 for Each node v in Tt do

2 for i from 1 to l do

3 Perform an h-hop random walk from v, with structural hop probability, ps;

4 Classify v with the class label most frequently encountered;

5 q ← the percentage of nodes correctly classi� ed;

6 Return classification labels and q;

Algorithm 1 DyCOS Classi� cation Process

flip a coin with probability ps . In the event of a success, we
perform a structural hop; otherwise we perform a content
hop. Structural hops are straightforward, because we only
need to look up the adjacency list for that node, and perform
the corresponding hop.

For the case of the content-based hops, a two-step
approach is required. First, we need to determine the nodes
with the top-n most frequent two-hop paths from a node in
Nt to another node in Nt with the use of an intermediate
word node. The first step is to determine all the nodes which
are reachable in paths of length 2. Let the relative frequency
of the number of two-hop paths which lead to these n nodes
be denoted by r1 . . . rn. Then, we sample the ith among
these nodes with probability ri . By truncating the random
walk process to only the top-n nodes, we ensure that the
random walk is not lost because of nontopical words in
the documents. In order to actually perform the walk, we
need to use the inverted lists at the nodes in Nt and Mt .
For each node in Nt , we can determine the word nodes
contained in it. Then, for each word node, we can determine
the structural nodes which contain that word. This can again
be achieved by using the inverted lists at the word nodes.
The union of these lists is the set of nodes which can
be reached in a content-walk of length 2. The top-n most
frequent nodes among these are sampled for the purposes
of determining the next node in the walk. We note that
content hops are less efficient to perform than structural
hops, but the use of inverted lists greatly speeds up the
process.

3.2. Analysis

An important point to note is that we are essentially
using Monte Carlo sampling of the paths from different
nodes. The use of such a sample can result in some loss
of accuracy, but the advantage is that it is much more
efficient than the use of an exact computation of node
probabilities. This is because the exact computation of

node probabilities can require expensive matrix operations
based on the structure of the graph adjacency matrix.
This is not very helpful for a large network in which
many such computations need to be performed. The
sampling approach is also critical in being able to utilize
the approach effectively in a dynamic scenario in which
repeated recomputation of node probabilities is required.
Therefore, an efficient sampling approach such as the one
discussed in the paper is critical. In this section, we will
study the loss of accuracy which arises from the use of
such samples. The aim is to show that the use of Monte
Carlo samples retains practically the same effectiveness
as an approach which can determine the hop probabilities
exactly. As mentioned earlier, the class which is visited the
maximum number of times during the entire random walk
process is reported as the relevant class. As in the previous
discussion, we ignore word nodes in the analysis of hops,
since they are only used as intermediate nodes during the
content hops. Therefore, all hops are considered to be either
structural hops from one node in Nt to another node in Nt ,
or content hops from one node in Nt to another node in Nt

with the use of an intermediate word node. The main focus
is to show that the ordering of different classes in terms of
the number of visits does not change significantly because
of the sampling process. For this purpose, we will use the
Hoeffding inequality. First, we will consider the case of two
classes. Then, we will generalize our results to an arbitrary
number of classes. Let us consider two classes 1 and 2,
for which the expected fraction of visits for a particular test
node are f1 and f2, respectively, so that b = (f1 − f2) > 0.
In this case, class 1 is a more appropriate label for the test
node as compared to class 2, because it is the majority
class. We further note that the sum of f1 and f2 may not
necessarily be 1, because many of the intermediate nodes in
the hop may be unlabeled. We would like to determine the
probability that the Monte Carlo sampling process results
in the undesirable outcome of the ordering of the classes 1
and 2 being reversed during the random sampling process.
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This directly provides us with the classification error
probability.

LEMMA 1: Let us consider two classes with expected
visit probabilities of f1 and f2, respectively, such that
f1 − f2 > 0. Then, the probability that the class which is
visited the most during the sampled random hop process is
reversed to class 2, is given by at most e−l·b2/2.

Proof: See Appendix. �

The result above shows that the probability of error
because of sampling reduces exponentially with the number
of paths that are sampled. For example, consider the case,
when we sample 100 different paths, and b = 0.1. In
that case, the probability of error is given by at most
e−1000·0.01/2 = e−5 < 1%. This suggests that the additional
error of approach because of the sampling process will
be less than 1%. In general, the exponential rate of error
decrease with sample size is critical in ensuring that
the approach can be used efficiently with Monte Carlo
sampling. Next, we will generalize the result to the case of
k classes. First, we need to define the concept of b-accuracy
of a sampling process in a case with k classes.

DEFINITION 1: Let us consider the node classification
problem with a total of k classes. We define the sampling
process to be b-accurate, if none of the classes whose
expected visit probability is less than b of the class with the
largest expected visit probability turns out have the largest
sampled visit probability.

We note that the above definition is simply a general-
ization of the case for two classes. The main purpose of
defining the concept of b-accurate is to ensure that none of
the classes which are too far off from the optimum value are
picked as a result of the sampling process. We can directly
generalize the results of Lemma 1 in order to prove that
the sampling process is b-accurate.

THEOREM 1: The probability that the sampling pro-
cess results in a b-accurate reported majority class is given
by at least 1 − (k − 1) · e−l·b2/2.

Proof: See Appendix. �

Theorem 1 presents the theoretical analysis of the
accuracy of the proposed random walk-based approach.
It states that even with random walks, the proposed
classification method is able to report the same majority
class as a process which uses an infinite amount of sampling
with at least a certain probability. This suggests that the
proposed DyCOS framework is robust to the potential
noise inherent in the sampling approach of the random walk
process.

4. SUPERVISED KEYWORD-BASED
CLUSTERING

In many social networking applications, it is desirable to
create supervised clusters from the underlying data with the
use of the content. For example, a marketing firm may wish
to determine clusters of users that are interested in a variety
of different products which are specified by corresponding
keywords. In such cases, it may be desirable to determine
supervised keyword-based clusters, as opposed to purely
unsupervised clusters from the data. Supervised clusters are
also often much richer and useful when they are designed
with application-specific criteria.

One naive solution is to simply identify pages in the
social network for which the text content contains the
corresponding keywords. However, such a solution is often
not very effective because the text in a social network is
quite noisy and sparse. Therefore, many nodes may exist
which do not contain the relevant keyword, but which are
quire relevant to that topic. Furthermore, clustering is an
application in which we wish to not only determine entities
which are directly related to a particular keyword, but
also those which are indirectly related to it. The linkage
information in social networks is extremely relevant to the
clustering process, and it can be leveraged with the text-
content in order to design an effective clustering algorithm.

We will design an effective voting algorithm which
uses alternate phases of propagation and voting in order
to construct the clusters around the different nodes. The
algorithm works with a set S which corresponds to nodes
that have been currently assigned to one or more clusters.
We initially start off with a small set of nodes S, and
successively expand with the use of an iterative propagation
and voting mechanism. Let K be the set of keywords, which
are input to the supervised clustering algorithm. We assume
that the number of keywords in set K also corresponds to
the number of clusters which need to be found. We denote
the number of clusters which the algorithm needs to find
by t = |K|. In the first step, we set S to be the set of
nodes which contains the keywords in K. Each node is
initially assigned to the index of cluster corresponding to
its contained keyword. We further note that the assignment
of nodes in S to cluster indices can change in later iterations
depending upon the results of the propagation process.

In the first iteration, we start random walks from nodes in
S, each of which is already associated with a cluster index.
As in the case of the classification application, we perform l

hops of length h for each. For each node in the entire graph,
we maintain a set of votes for the different cluster indices.
These votes are initially set to zero for each cluster index
and each node. For each node visited by the random walk,
we add a vote to the cluster index of the starting point of
that walk. We repeatedly pick a random node in S in order
to perform the random walk of length h. This process is
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Data: Network Gt = (Nt, ,At Tt), number of random walks, l, walk length, h, structural

hop probability, ps, keyword set, K, clustering threshold, s

Result: K-supervised clusters CK
1 ← nodes containing the keywords in K;

2 Assign each node in with a cluster index;

3 while not converged yet do

4 for Each node v in do

5 for i from 1 to l do

6 Perform an h-hop random walk from v, with structural hop probability,

ps, in which for each node visited, add a vote to the cluster index of v;

7 Tally the total number of votes received by each node and for each cluster index;

8 For those whose maximum cluster index is greater than s, add them to and

associate them with the corresponding cluster index;

9 Update CK;

10 return CK;

Algorithm 2 DyCOS Clustering Process

repeated l times. Thus, each walk increases the number of
votes at the different nodes. At the end of the entire process,
we tally the total number of votes received by each node and
for each cluster index. For each node which has received
nonzero votes, we determine the cluster index which has
received the largest number of votes. If this cluster index
has received greater than σ votes (for some threshold σ ),
then we add this node to the set S and associate it with
the corresponding cluster index. We note that nodes which
are already present in S may also have votes associated
with them. In most cases, their votes will be in agreement
with the current cluster index. However, if their votes are
not in agreement with the current cluster index, then the
assigned cluster index of that node is changed. We note
that at the end of the iteration, several nodes would have
been added to S.

In the next iteration, we start off with this expanded set
S, and repeat this process in an identical way. In this case,
the starting points for the walk can be any node which is
randomly chosen from this expanded set S. This process is
continuously repeated until the set S no longer expands
significantly in a given iteration. At this procedure the
algorithm terminates. The overall procedure is illustrated
in Algorithm 2.

We note that not all nodes may be included in S at
the termination of the algorithm. This is natural, because
some nodes may be outlier nodes which are not relevant
to any natural cluster. Furthermore, a supervised clustering
algorithm does not always naturally include all nodes in
relevance to its initial supervision. In the next section,
we will show the interesting clusters which are naturally
obtained with the use of such a technique.

One interesting characteristic of the random walk method
for clustering is that the number of votes received by
each node is somewhat analogous to a page-rank style
importance of that node. Of course, since the random walks
are performed on the basis of both link and content, the
page-rank style importance also naturally incorporates this
goal. Therefore, this approach also provides a natural way
of determining the most influential (or well connected)
nodes in each cluster both from a link and content point-
of-view.

5. EXPERIMENTAL RESULTS

In this section, we validate the effectiveness and effi-
ciency of DyCOS with experiments on real data sets. The
effectiveness is measured by classification accuracy, which
is the proportion of correctly classified nodes as to the total
number of test nodes classified. The efficiency is measured
by the run time of classification. We report the wall-clock
time. In order to establish a comparative study, we compare
the performance of DyCOS to that of NetKit-SRL toolkit,1

which is an open-source network learning toolkit for statis-
tical relational learning [22]. The results obtained in a mul-
ticlass classification environment demonstrate that DyCOS
is able to improve the average accuracy over NetKit-SRL by
7.18–17.44%, while reducing the average runtime to only
14.60–18.95% of that of NetKit-SRL. Note that NetKit-
SRL package is a generic toolkit without particular opti-
mization for our problem definition. In order to illustrate

1 http://www.research.rutgers.edu/∼sofmac/NetKit.html.
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Table 1. Data set description.

Name Nodes Edges Classes Labeled nodes

CORA 19 396 75 021 5 14 814
DBLP 806 635 4 414 135 5 18 999

the efficiency of DyCOS in a dynamic environment, the
model update time in the presence of incrementally arriving
data is also reported. This confirms that the classification
model can be dynamically maintained in an efficient way.

5.1. Experiment Setup

Two real data sets are used, the CORA data set and
the DBLP data set, as in Table 1. The class number is the
number of distinct classes the nodes belong to and the
labeled node number is the number of nodes whose class
label is known. Each data set is segmented into a set
of subgraphs. The classification is performed dynamically
when the graph increasingly evolves from containing only
the first subgraph to containing all subgraphs.

CORA data. The CORA graph is downloaded from
http://www.cs.umass.edu/∼mccallum/code-data.html.It con-
tains a set of research papers and the citation relations
among them. There are 19 396 distinct papers and 75 021
citation relations among them. Each node is a paper and
each edge is a citation relation. A total of 12 313 English
words are extracted from the titles of those papers to asso-
ciate each paper with keywords. The CORA data set is
well-suited for our experiments because the papers are clas-
sified into a topic hierarchy tree with 73 leaves. Each leaf
represents a specific research area in computer science. We
reconfigure the hierarchy to achieve a more coarse-grained
classification. We extract five classes out of the 74 leaves,
and 14 814 of the papers belong to these five classes. As
the CORA graph does not include temporal information, we
segment the data into 10 subgraphs, representing 10 syn-
thetic time periods. Table 2 shows the graph size for each
time period.

DBLP data. The DBLP graph is downloaded from http://
www.informatik.uni-trier.de/∼ley/db/ and updated until
March 27, 2010. It contains 806 635 distinct authors and
4 414 135 collaboration edges among them. Each node is
an author and each edge represents a coauthor relationship.
A total of 194 English words in the domain of computer sci-
ence are manually collected to associate authors with key-
word information. The number of occurrences of each word
is calculated based on the titles of publications associated
with each author. We use five class labels, which denote
five computer science domains: computer architecture, data
mining, artificial intelligence, networking, and security. We
associate some of the authors with ground-truth class labels

using information provided by ArnetMiner,2 which offers
a set of comprehensive search and mining services for aca-
demic community. In total we have collected class labels for
18 999 authors. We segment the whole DBLP graph into 36
annual graphs from year 1975 to year 2010. Table 3 shows
the average graph size for three time periods: 1975–1989,
1990–1999 and 2000–2010.

NetKit-SRL toolkit. The well-known NetKit-SRL tool-
kit was used for comparative study. NetKit-SRL, or NetKit
for short, is a toolkit for learning from and classifying
networked data. It is open-source and publicly available. It
is aimed at estimating the class membership probability of
unlabeled nodes in a partially labeled network [22]. NetKit
contains three key modules: local classifier, relational
classifier, and collective inferencing. For more details
on NetKit, we refer the readers to Ref. [22]. In our
experiments, we use domain-specific class-prior as the local
classifier, network-only multinomial Bayes classifier as the
relational classifier and relaxation labeling for collective
inferencing.

Several parameter settings were tested in order to
examine DyCOS’s performance under various conditions.

1. The number of most discriminative words, denoted
by m (Section 2).

2. Number of top two-hop paths, n (Section 3.1).

3. The size constraint of the inverted list for word i

(Section 2.1), denoted by a, that is, |Pi | <= a. This
is required to control the extent to which each word
should be expanded to form 2-hop paths from the
current source node. Such a constraint is necessary to
increase the efficiency of the random-walk process.

4. The structure parameter ps (Section 3).

5. Number of random walks for each source node, l

(Section 3.1).

6. Number of hops in each random walk, h (Section 3.1).

In the following sections, the classification performance
of DyCOS is first compared to that of NetKit. We
then examine how well DyCOS performs in a dynamic
environment. The model sensitivity to two important
parameters, the number of most discriminative words, m,
and the size constraint of inverted lists for words, a,
is examined later. Finally, we show case studies on the
supervised keyword-based clustering using DyCOS. All
experiments are run in Fedora 8 on an one-core Intel Xeon
2.5 GHz machine with 32 GB RAM.

2 http://www.arnetminer.org/.
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Table 2. Segment graph size of CORA.

1 2 3 4 5 6 7 8 9 10

|V | 1500 1500 1500 1500 1500 1500 1500 1500 1500 1314
|E| 4743 1110 611 384 263 262 201 147 0 0

Table 3. Average segment graph size of DBLP.

1975–1989 1990–1999 2000–2010

|V | 7950 41 192 129 638
|E| 7166 57 624 267 787

5.2. Classification Performance

The classification performance is measured by both
accuracy and efficiency. The accuracy is the fraction
of correctly classified nodes. The efficiency is reflected
by the wall-clock run time in seconds. The parameter
setting is: m = 5, n = 10, a = 30, ps = 0.7, l = 3, and
h = 10. We will show later DyCOS is not significantly
sensitive to these parameters. The setting for NetKit is
as aforementioned. We utilize the ‘-test’ option in NetKit
to ensure a consistent set of test samples compared to
DyCOS.

5.2.1. Comparative study on CORA data set

In this section, we compare the DyCOS and Netkit
algorithms on the CORA data. Figure 2(a) shows the
average classification accuracy of both DyCOS and Netkit
for each synthetic time period. Clearly, DyCOS enables
a performance gain ranging from 9.75 (time period 1) to
22.60% (time period 7). The average accuracy increase by
DyCOS is 17.44% on CORA.

The comparison of run time is shown in Fig. 2(b). As
shown, DyCOS is much more efficient in terms of run
time. The run time of DyCOS is only a portion of that of
NetKit, ranging from 12.45% (time period 10) to 16.70%

(time period 7). The average run time of DyCOS is 14.60%
that of NetKit on CORA.

5.2.2. Comparative study on DBLP

Next, we present the comparative results on DBLP data.
In order to establish a dynamic view, we divide the entire
36-year course of time into three periods, 1975–1989,
1990–1999, and 2000–2010. Figure 3(a) presents the
average accuracy of both DyCOS and Netkit, for each
time period. DyCOS achieves a performance gain ranging
from 1.75 (time period 2000–2010) to 13.73% (time period
1975–1989). The average accuracy increment induced by
DyCOS is 7.18% on DBLP.

The comparison of run time is shown in Fig. 3(b). As
shown, DyCOS again decreases the run time significantly.
The run time of DyCOS is only a portion of that of NetKit,
ranging from 11.30 (time period 2000–2010) to 21.30%
(time period 1975–1989). The average run time of DyCOS
is 18.95% that of NetKit on DBLP.

5.3. Dynamic Update Efficiency

In this section, we investigate the efficiency of DyCOS
in the presence of dynamically arriving data. DyCOS han-
dles temporally-evolving graphs with efficient update mech-
anisms. Table 4 presents the average model update time (in
seconds) of DyCOS when new data from the next synthetic
time period arrives, on CORA data. The average model
update time over all 10 time periods is 0.015 s. Table 5
presents the average annual model update time (in seconds)
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Table 4. Average dynamic update time on CORA.

Time period 1 2 3 4 5

Update time (s) 0.019 0.013 0.015 0.013 0.023

Time period 6 7 8 9 10

Update time (s) 0.015 0.014 0.014 0.013 0.011

Table 5. Average dynamic update time on DBLP.

Time period 1975–1989 1990–1999 2000–2010

Update time (s) 0.03107 0.22671 1.00154

of DyCOS over various time periods, on DBLP data. The
average annual model update time over all 36 years is
0.38 s. The results demonstrate the efficiency of maintain-
ing the DyCOS model under a dynamically evolving net-
work environment. This is a unique advantage of DyCOS
in terms of its ability to handle dynamically updated graphs.

5.4. Parameter Sensitivity

The purpose of this section is to examine the sensitiv-
ity of DyCOS to various parameters, and their impact on
DyCOS performance. Due to limited space, we demon-
strate the sensitivity study on two particularly important
parameters, the number of most discriminative words, m

(m test), and the size constraint of inverted lists for words,
a (a test). Results suggest that there is no significance cor-
relation between the performance and the values of m and
a. The robustness of DyCOS is therefore illustrated since
it does not heavily rely on parameter setting, and more
efficient choices can achieve equally effective results.

5.4.1. Parameter sensitivity on CORA

For m test on CORA data, three different scenarios
are created, which are (i) n = 5, l = 3, h = 5, a = 10, ps =

0.5, (ii) n = 8, l = 5, h = 10, a = 20, ps = 0.6, and (iii)
n = 10, l = 8, h = 15, a = 30, ps = 0.7. Figures 4(a) and
4(b) demonstrate how classification accuracy and run
time change over different m values, respectively. It is
evident that there is no significant correlation between m

and the classification performance. For a test on CORA
data, three different scenarios are also created, which
are (i) n = 5, l = 3, h = 5,m = 5, ps = 0.5, (ii) n = 8, l =
5, h = 10,m = 10, ps = 0.6, and (iii) n = 10, l = 8, h =
15,m = 15, ps = 0.7. Similar results can be found in
Figures 4(c) and 4(d).

5.4.2. Parameter sensitivity on DBLP

The same scenarios are created for m test and a test
on DBLP as well. Figures 4(e) and 4(f) demonstrate the
sensitivity to parameter m in terms of accuracy and run
time. Interestingly, we can observe that, on DBLP data,
classification accuracy reduces slightly when m increases.
This is expected because a higher value of m implies that
less discriminative words are included into computing two-
hop paths during random walks. The run time increases with
m. This is expected because a content hop takes more time
to process if there are more discriminative keywords. The
results in Figs 4(g) and 4(h) show no significant correlation
between performance and a on DBLP.

5.5. Case Study on Supervised Clustering

As mentioned earlier, DyCOS can be extended to cre-
ate supervised clusters with the use of the content. In this
section, we perform interesting case studies by providing
qualitative analysis on some of the clusters discovered by
our voting algorithm. Clustering is initiated and supervised
by a set of intuitive keywords. We will show that the use of
a combination of a propagation scheme with content anal-
ysis for the clustering process, creates clusters which are
able to incorporate entities that are indirectly related to the
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Fig. 4 Parameter sensitivity. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

keywords. This is because the use of linkage information
provides useful information to the clustering process.

Table 6 shows some interesting clustering results using
three sets of keywords (KW set) on the DBLP graph of
year 2008. The three keyword sets are: {‘Data’, ‘Mining’,
‘Knowledge’, ‘Information’}, {‘Statistical’, ‘Stochastic’,

‘Probability’}, and {‘Artificial’, ‘Intelligence’, ‘Learning’,
‘Recognition’}. After clustering, each keyword will be
associated with a group of authors. The motivation lies
in observing the author community discovered for each
keyword of interest. Among the authors clustered for a
given keyword, some might directly contain that keyword
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Table 6. Case study: supervised keyword-based author clustering on DBLP, year 2008.

KW Set KW Author cluster Perc.

# 1 "Data" KW Authors Dan Suciu, Alon Y. Halevy, Charu Aggarwal,
Divyakant Agrawal, Amr El Abbadi, Johannes
Gehrke, Jian Pei, etc.

21.67%

Non-KW Authors Gerhard Weikum, Vassilis J. Tsotras, Sara Cohen,
Laurence Tianruo Yang, Wagner Meira Jr., Feng
Liu, etc.

"Mining" KW Authors Xifeng Yan, Stephen R. Schach, Gerhard Friedrich,
Michael Philippsen, Dingyi Han, Frans Coenen,
etc.

14.96%

Non-KW Authors Joann J. Ordille, Clement H. C. Leung, Indrajit
Bhattacharya, Xuhua Ding, Zoran Duric, etc.

"Knowledge" KW Authors Yoram Moses, Amit Sahai, Yoav Shoham, Salil P.
Vadhan, Rafail Ostrovsky, Chitta Baral, etc.

18.57%

Non-KW Authors Mark A. Musen, Joachim Biskup, John Shepherd,
Ralph Bergmann, Avinash C. Kak, Wilhelm
Hasselbring, etc.

"Information" KW Authors Jiawei Han, Rajiv Gupta, George Karypis, Philip A.
Bernstein, Daniel S. Weld, Craig A. Knoblock,
etc.

22.18%

Non-KW Authors Stanley Y. W. Su, Colette Rolland, Weijia Jia,
Camille Salinesi, William Donnelly, Michael
Kohlhase, etc.

# 2 "Statistical" KW Authors Hermann Ney, Timothy F. Cootes, Christopher J.
Taylor, Franz Joseph Och, David Blaauw,
Vladimir Zolotov, etc.

23.48%

Non-KW Authors Stefanos Gritzalis, Andrew Turpin, Attilio
Giordana, Ravi Mukkamala, Qiang Zhu,
Giacomo Cabri, etc.

"Stochastic" KW Authors Eli Upfal, Michael L. Littmanm, Eitan Altman,
B. John Oommen, Joost-Pieter Katoen, David B.
Shmoys, etc.

21.33%

Non-KW Authors Shimon Whiteson, Martin Wirsing, Aly A. Farag,
Wen Gao, Jing Zhang, Michael Jurczyk, etc.

"Probability" KW Authors Henri Prade, Glenn Shafer, Prakash P. Shenoy,
Didier Dubois, Irwin King, Gert de Cooman, etc.

25.13%

Non-KW Authors Kevin Leyton-Brown, Alex Acero, Daniel M.
Reeves, Davide Rossi, John Illingworth,
Xiaolong Wang, etc.

# 3 "Artificial" KW Authors Jonathan Grudin, Andrei Voronkov, Marco
Colombetti, Cristiano Castelfranchi, Rino
Falcone, Xin Yao, etc.

19.30%

Non-KW Authors Christophe G. Giraud-Carrier, Jerzy W.
Grzymala-Busse, Alexander Pokahr, Lars
Braubach, Erin Shaw, etc.

"Intelligence" KW Authors Umeshwar Dayal, Sotiris Malassiotis, Epaminondas
Kapetanios, Mukesh K. Mohania, Divyakant
Agrawal, Panos Vassiliadis, Volker Markl, etc.

16.99%

Non-KW Authors Ning Zhong, Partha Pratim Pal, Michael Atighetchi,
Indrajit Bhattacharya, Paul A. Beardsley, etc.

"Learning" KW Authors Avrim Blum, Michael Kearns, Thomas G.
Dietterich, Rocco A. Servedio, Sanjay Jain,
Lorenza Saitta, etc.

21.50%

Non-KW Authors Raghu Ramakrishnan, Pat Langley, Vipin Kumar,
Michael Steinbach, Stuart M. Shieber, Heikki
Mannila, etc.

"Recognition" KW Authors Rajiv Gupta, Luca Benini, Stuart M. Shieber,
Kotagiri Ramamohanarao, Mannes Poel,
Chin-Chen Chang, etc.

19.88%

Non-KW Authors Michael Collins, Andrea Cavallaro, Nikos
Nikolaidis, Michel Scholl, Peter Sanders, etc.
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Table 7. Case study: supervised keyword-based author clustering on DBLP, year 2009.

KW Set KW Author Cluster Perc.

# 1 "Data" KW Authors Serge Abiteboul, Michael Stonebraker, Dan Suciu,
Alon Y. Halevy, Rakesh Agrawal, Yuri Breitbart,
etc.

21.70%

Non-KW Authors Jeffrey D. Ullman, Yannis E. Ioannidis, Henry F.
Korth, Curtis E. Dyreson, Fabio Martinelli,
Takeshi Naemura, etc.

"Mining" KW Authors Athman Bouguettaya, Sharma Chakravarthy, Xiaohui
Liu, Athena Vakali, Dimitrios Gunopulos,
Maguelonne Teisseire, etc.

15.14%

Non-KW Authors Gregory F. Cooper, Craig W. Thompson,
Lawrence V. Saxton, Pranam Kolari, Steven C. H.
Hoi, etc.

"Knowledge" KW Authors Shamkant B. Navathe, Joseph Y. Halpern, Ronald J.
Brachman, John Mylopoulos, Amit P. Sheth,
Henry Lieberman, etc.

17.88%

Non-KW Authors Pierangela Samarati, Richard T. Snodgrass, Jennifer
Widom, Davide Fossati, Werner Geyer, Wilfried
Lemahieu, etc.

"Information" KW Authors W. Bruce Croft, C. J. van Rijsbergen, Daniel S.
Weld, Jiawei Han, Craig A. Knoblock, Alon Y.
Halevy, etc.

21.02%

Non-KW Authors Daniela Rus, Paul Johannesson, Eugene J. Shekita,
Xue Li, Alexandros Nanopoulos, Ioannis P.
Vlahavas, etc.

# 2 "Statistical" KW Authors Hermann Ney, Salil P. Vadhan, David Blaauw,
Surajit Chaudhuri, Peter J. Haas, Thierry Lecroq,
etc.

6.39%

Non-KW Authors Jennifer Widom, Gail E. Kaiser, Dorothy E.
Denning, John D. Lafferty, Arie Shoshani, etc.

"Stochastic" KW Authors Michael I. Jordan, Gianfranco Balbo, Gianfranco
Ciardo, B. John Oommen, Eitan Altman,
Michael L. Littman, etc.

6.27%

Non-KW Authors Amit P. Sheth, Clement T. Yu, Umeshwar Dayal,
Stavros Christodoulakis, Weiyi Meng, Alfons
Kemper, etc.

"Probability" KW Authors Ronald Fagin, Tao Jiang, Reynold Cheng, Eibe
Frank, Cory J. Butz, Vincent Rijmen, Joan
Daemen, etc.

6.56%

Non-KW Authors John A. Stankovic, Paul C. van Oorschot, Fernando
Lyardet, Matthias Baaz, Dario Maio, Patrick
Cousot, etc.

# 3 "Artificial" KW Authors Marco Colombetti, Teresa Bernarda Ludermir,
Leandro Nunes de Castro, Dietmar Jannach,
Ioannis P. Vlahavas, etc.

19.51%

Non-KW Authors Vipin Kumar, Gerald J. Sussman, Leif Kobbelt,
Marek R. Ogiela, Wolfgang Maass, etc.

"Intelligence" KW Authors Georg Gottlob, Andrea Omicini, Enrico Denti, Anton
Nijholt, Alkis Simitsis, Isabelle Bloch, etc.

14.94%

Non-KW Authors Stefanos D. Kollias, Alan P. Sprague, Omer F. Rana,
Antonio Ortega, Rajkumar Buyya, etc.

"Learning" KW Authors Elisa Bertino, Felix Naumann, Wolfram Burgard,
Michael I. Jordan, Dana Angluin, Thomas G.
Dietterich, Dan Roth, etc.

21.99%

Non-KW Authors Jeffrey D. Ullman, Jennifer Widom, Philip A.
Bernstein, Richard T. Snodgrass, Victor Vianu, etc.

"Recognition" KW Authors Xiaoou Tang, Bir Bhanu, Ching Y. Suen, P. Jonathon
Phillips, Harry Wechsler, Ramez Elmasri, etc.

21.77%

Non-KW Authors Daniel A. Keim, Hatice Gunes, Bertrand Meyer,
Norio Shiratori, Atsushi Nakazawa, etc.
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in their content (KW Authors), which is the set of paper
titles of their publications in the year 2008, whereas the
others might not (Non-KW authors).

For example, let us examine some cases from Table 6.
Even though the author Indrajit Bhattacharya did not
publish any paper, whose title contained the word ‘Mining’
in 2008, he is grouped into the cluster associated with
the keyword ‘Mining’. One of the reasons for this is
his collaboration with other authors, such as Shantanu
Godbole, who have published at least one paper in 2008
whose title contains ‘Mining’. We argue such grouping
is reasonable and conforms with intuition in terms of
discovering valuable clusters. Another case in point is
Vassilis J. Tsotras, who has been grouped into the ‘Data’
cluster because of collaboration with authors with this
keyword in 2008, one of whom is Erik G. Hoel.

An additional aspect of DyCOS-based clustering is
the effect of the content-based hops on the clustering
process. In such cases, it is possible for authors with
common keywords in their content to be clustered together.
These common keywords are often correlated to the seed
keywords, because of their presence in the seed documents.
For example, Stefanos Gritzalis and Roberto Perdisci both
work in security-related research areas, and they share some
keywords in common in 2008, including ‘clustering’ and
‘classification’. Clearly such keywords are often relevant to
the original seed keywords for the clustering process, and
can lead to relevant clusters. In addition, Roberto Perdisci
has the word ‘Statistical’, which renders Stefanos Gritzalis
to be grouped into the ‘Statistical’ cluster. This shows
one of DyCOS’s principles: nodes with similar content
should be grouped together. This example suggests that
both structural and content hops can be useful for the
clustering process.

The results for DBLP in 2009 are shown in Table 7. An
interesting example is the inclusion of Paul Johannesson
in clusters related to the keyword ‘Information’. Paul
Johannesson and Jelena Zdravkovic both work in the
area of business modeling and business process, and have
collaborated in the year 2009. Jelena Zdravkovic contains
the keyword ‘Information’ in 2009, which contributes to
the clustering of Paul Johannesson into the ‘Information’
group. While the word ‘Information’ was not explicitly
available in the titles of the latter’s publications, we note
that an important research interest of Paul Johannesson
is information systems. This suggests the results of the
clustering process are intuitive and reasonable, and clearly
benefit from the use of linkage information. As for authors
with similar content, examples include Omer F. Rana and
Carlo Combi, who share common keywords in their content,
such as ‘workflow’. Since Carlo Combi has a paper with
‘Intelligence’ in the title in 2009, Omer F. Rana is also
included in the ‘Intelligence’ cluster.

The rightmost column of both Tables 6 and 7 is the
percentage of nonkeyword authors in each cluster. Clearly,
our supervised clustering algorithm is able to discover a
significant portion of authors who are indirectly related to
the keyword of interest. Meanwhile, the algorithm is also
able to find groups of authors who collaborate frequently.
For example, Timothy F. Cootes and Christopher J. Taylor
work closely together, and they are both grouped into the
same cluster corresponding to the keyword ‘Statistical’ in
2008. Intuitively, we can consider each keyword-supervised
cluster as a set of authors directly related to this keyword,
together with their close collaborators, as well as authors
that are similar to them in terms of research interests.

DyCOS-based clustering is also able to discover influen-
tial authors related to the different keywords by examining
the individuals that received the most votes in each clus-
ter. For example, for the cluster ‘Knowledge’ in 2009, we
are able to determine that the most votes were received by
Richard T. Snodgrass, Jennifer Widom, and Shamkant B.
Navathe among others. For the cluster ‘Learning’ in 2009,
we are able to find Wolfram Burgard, Michael I. Jordan,
Jeffrey D. Ullman, Jennifer Widom, etc. Table 8 shows
some examples of the discovered authors and the number of
votes they get during random walks. In most cases, authors
with larger number of votes are either influential in that
respective field, or have collaborated with many scholars
from that field. This shows that DyCOS-based clustering
provides a formal way of determining which authors are
important or influential in the field defined by a keyword-
based cluster.

Table 9 exemplifies some of the interesting findings on
a segment of the CORA graph. Similarly, each cluster con-
tains either papers which directly contain the keyword, or
papers that are indirectly related to it. For example, the
paper ‘Neuron-like adaptive elements that can solve diffi-
cult learning control problems’ is grouped into the ‘Infor-
mation’ cluster, because of the fact that it shares common
keywords with some other papers which actually contain
the keyword ‘Information’, such as ‘The use of meta-level
information in learning situation specific coordination’ and
‘Advances in neural information processing systems’. Other

Table 8. Case study: DBLP authors and their votes, year 2009.

"Knowledge" "Learning"

Author name Vote # Author name Vote #

Pierangela Samarati 269 Jeffrey D. Ullman 360
Richard T. Snodgrass 221 Philip A. Bernstein 154
Jennifer Widom 168 Wataru Sunayama 151
Ulrich Furbach 76 Elisa Bertino 91
Shamkant B. Navathe 53 Felix Naumann 53
Dexter Kozen 51 Wolfram Burgard 52
Gerald DeJong 51 Michael I. Jordan 23
. . . . . . . . . . . .
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Table 9. Case study: supervised keyword-based paper clustering on CORA, Segment 1

KW Set KW Author cluster Perc.

# 1 "Data" KW Papers ‘A data locality optimizing algorithm’, ‘A methodology
for implementing highly concurrent data structures’,
etc.

3.77%

Non-KW Papers ‘Mach: a new kernel foundation for UNIX
development’, ‘Scale and performance in a distributed
file system’, etc.

"Mining" KW Papers ‘Mining generalized association rules’, ‘Mining
association rules between sets of items in large
databases’, ‘Efficient and effective clustering methods
for spatial data mining’, etc.

11.11%

Non-KW Papers ‘A weighted nearest neighbor algorithm for learning
with symbolic features’, ‘Discovery of multiple-level
association rules from large databases’, etc.

"Knowledge" KW Papers ‘The Knowledge complexity of interactive proof
systems’, ‘The frame problem and Knowledge
producing actions’, etc.

7.70%

Non-KW Papers ‘Genetic algorithms in search, optimization and machine
learning’, ‘A method for obtaining digital signatures
and public-key cryptosystems’, ‘Learning to predict
by the methods of temporal differences’, etc.

"Information" KW Papers ‘Preserving and using context information in interprocess
communication’, ‘Cooperative information gathering:
A distributed problem solving approach’, etc.

10.81%

Non-KW Papers ‘Neuron like adaptive elements that can solve difficult
learning control problems’, ‘The stable model
semantics for logic programming’, etc.

# 2 "Statistical" KW Papers ‘A statistical model for relevance feedback in
information retrieval’, ‘A statistical approach to
solving the EBL utility problem’, etc.

15.38%

Non-KW Papers ‘Learning with many irrelevant features’, ‘Minorization
conditions and convergence rates for Markov chain
Monte Carlo’, etc.

"Stochastic" KW Papers ‘Planning With Deadlines in Stochastic Domains’, ‘On
the convergence of stochastic iterative dynamic
programming algorithms’, etc.

57.13%

Non-KW Papers ‘Learning to predict by the methods of temporal
differences’, ‘An algorithm for probabilistic
least-commitment planning’, etc.

"Probability" KW Papers ‘Probabilistic independence networks for hidden Markov
probability models’, etc.

77.78%

Non-KW Papers ‘Operations for learning with graphical models’,
‘Bayesian graphical models for discrete data’, etc.

# 3 "Artificial" KW Papers ‘Communicative actions for artificial agents’, etc. 66.67%
Non-KW Papers ‘A semantics approach for KQML: a general purpose

communication language for software agents’, ‘Kqml
as an agent communication language’, etc.

"Intelligence" KW Papers ‘Intelligence without Robots (A Reply to Brooks)’, etc. 50.00%
Non-KW Papers ‘Synchronization of multi-agent plans’, etc.

"Learning" KW Papers ‘Learning to predict by the methods of temporal
differences’, ‘Neuron like adaptive elements that can
solve difficult learning control problems’, etc.

65.79%

Non-KW Papers ‘A robust layered control system for a mobile robot’,
‘Introduction to the Theory of Neural Computation’,
etc.

"Recognition" KW Papers ‘Connectionist Speech Recognition: A Hybrid
Approach’, ‘A Formal Theory of Plan Recognition
and its Implementation’, etc.

47.37%

Non-KW Papers ‘A Theory of Networks for Approximation and
Learning’, ‘Recursive estimation of motion, structure,
and focal length’, etc.
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examples are the inclusion of ‘Minorization conditions and
convergence rates for Markov chain Monte Carlo’ into the
‘Statistical’ cluster because of its common keywords with
some other papers such as ‘Statistical and systematic errors
in Monte Carlo sampling’, and the inclusion of ‘A weighted
nearest neighbor algorithm for learning with symbolic fea-
tures’ into the ‘Mining’ cluster because of its common
keywords with papers such as ‘SMART-TV: a fast and scal-
able nearest neighbor based classifier for data mining’. Each
cluster for a particular keyword therefore consists of a set
of papers directly containing that keyword and other papers
that are similar to them.

6. CONCLUSIONS AND SUMMARY

In this paper, we present an efficient, dynamic and
scalable method for node classification in networks with
both structure and content. The classification of content-
based networks is challenging, because some parts of the
network may be suited to structural classification, whereas
others may be suited to content-based classification.
Furthermore, many networks are dynamic, which requires
us to maintain an incremental model over time. Our results
show that our algorithms are scalable, and can be be applied
to large and dynamic networks. We show the advantages of
using a combination of content and linkage structure, which
can provide more robust classification across different parts
of a diverse network. We also show how to use the
technique in order to find supervised clusters in social
networks. Experimental results on real data sets show that
our algorithms outperform competing algorithms in terms
of both effectiveness and efficiency.

APPENDIX

7. DETAILS OF PROOFS

LEMMA 1: Let us consider two classes with expected visit probabili-
ties of f1 and f2, respectively, such that f1 − f2 > 0. Then, the probability
that the class which is visited the most during the sampled random hop
process is reversed to class 2, is given by at most e−l·b2/2.

Proof: Let Xi be the random variable which represents the fraction of
nodes of class 1, which are visited during the ith random walk, and let Yi

be the random variable which represents the fraction of nodes of class 2,
which are visited during the ith random walk. Then we define the random
variable defining the differential hop fraction as Zi = Xi − Yi . It is clear
that Zi is a random variable which lies in the range [−1, 1], and has an
expected value of b. Then, we define the random variable S as the sum
of the different values of Zi over the l different random walks. Therefore,
we have:

S =
l∑

i=1

Zi. (4)

As E[Zi ] = b, it follows that E[S] = l · b. In order for the majority class
to be class 2, we need S < 0. Therefore, we would like to determine the
probability P(S < 0). For this purpose, we will make use of the Hoeffding
inequality, because S is expressed as a sum of bounded random variables
in the range [−1, 1]. By using E[S] = l · b, we get:

P(S < 0) = P(S − E[S] < −l · b).

As S is the sum of l independent random variables, which lie in the range
[−1, 1], we can use the Hoeffding inequality to bound the probability of
error, a proxy for which is the expression P(< 0):

P(S < 0) = e−l·b2/2.

�

THEOREM 1: The probability that the sampling process results in a b-
accurate reported majority class is given by at least 1 − (k − 1) · e−l·b2/2.

Proof: The results of Lemma 1 show that the probability of pairwise
error is at most e−l·b2/2 because of the sampling process. Therefore, the
probability of pairwise error for any of the (at most) (k − 1) other classes
which have expected visit probability at most b of the optimum is given
by at most (k − 1) · e−l·b2/2. The result follows. �
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