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Abstract

Uncovering subgraphs with an abnormal distribution of at-

tributes reveals much insight into network behaviors. For

example in social or communication networks, diseases or

intrusions usually do not propagate uniformly, which makes

it critical to find anomalous regions with high concentrations

of a specific disease or intrusion. In this paper, we introduce

a probabilistic model to identify anomalous subgraphs con-

taining a significantly different percentage of a certain vertex

attribute, such as a specific disease or an intrusion, com-

pared to the rest of the graph. Our framework, gAnomaly,

models generative processes of vertex attributes and divides

the graph into regions that are governed by background and

anomaly processes. Two types of regularizers are employed

to smoothen the regions and to facilitate vertex assignment.

We utilize deterministic annealing EM to learn the model pa-

rameters, which is less initialization-dependent and better at

avoiding local optima. In order to find fine-grained anoma-

lies, an iterative procedure is further proposed. Experiments

show gAnomaly outperforms a state-of-the-art algorithm at

uncovering anomalous subgraphs in attributed graphs.

1 Introduction

The proliferation of rich information in real-world social
and communication networks raises new challenges for
graph mining. An important feature of these graphs is
that vertices are often associated with attributes and
events. For example, in a social network, a user could
be annotated by the type of disease he/she has been
infected with; in a communication network, a computer
might record various attacks it receives. Information
such as diseases or intrusions usually does not propagate
evenly in these networks. Anomalous regions found with
high concentrations of a specific disease or intrusion give
rise to new interesting data mining problems. We might
ask, why does a disease spread much faster in some
portions of a network? Why do a subset of computers
receive most of the attacks in the past day, and are they
therefore targeted attacks?
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Figure 1: A Subgraph with Many Infected Vertices

Consider a human network in Figure 1, where an
edge represents a friendship and a vertex color shows
whether a person is infected with a certain disease. The
region,R, exhibits a very different distribution of vertex
colors, as most people in R are infected, in contrast to
outside of R. It is interesting to identify such regions
so that we can study what caused the aggressive spread
of this disease within R. Applications of such detection
abound. For instance, in a customer network, we can
uncover interesting customer chains, a great percentage
of whom purchased a certain product.

Subgraphs like R in Figure 1 with a high con-
centration of an attribute are examples of anoma-
lies. Various types of graph anomalies have been stud-
ied [1, 3, 6, 14]. [1] finds abnormal vertices by check-
ing if their ego-nets comply with some power law-based
rules. [14] uses a variant of the minimum description
length (MDL) principle to uncover surprising substruc-
tures and subgraphs. Community outliers are studied
in [6], which finds contextual abnormal vertices in infor-
mation networks. These studies are not able to discover
the kind of anomalies illustrated in Figure 1, where ab-
normal distribution of attributes in a graph is captured.

We propose a probabilistic framework, gAnomaly,
that automatically captures and describes anomalies in
a vertex-attributed graph by modeling various attribute
distributions. An anomaly is a connected subgraph
whose distribution of attributes significantly differs from
the rest of the graph, as a result of non-random behav-
iors. Our motivation is to identify regions where infor-
mation has spread abnormally so that further study of
such anomalous propagation can be conducted.

Our work is related to some previous studies. Ab-
normal vertices with respect to specific communities are
studied in [6], which proposes a unified framework for
outlier and community discovery. However, the out-
liers are individual vertices scattered in the communi-
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ties; no stress is laid on the connectivity among out-
liers. In contrast, gAnomaly finds connected substruc-
tures exhibiting aberrant distribution of attributes. [21]
introduces a probabilistic approach to find graph clus-
ters exhibiting high edge density and attributive ho-
mogeneity. gAnomaly not only finds such clusters, but
also sparsely-connected regions as long as their attribute
distribution deviates from the majority. We further
propose an iterative procedure tailored towards fine-
grained anomaly detection, which makes gAnomalymore
robust and versatile. gAnomaly assumes that different
graph regions are governed by different attribute distri-
butions, and serves as a fundamental model to uncover
such underlying distributions and the corresponding re-
gions. gAnomaly helps understand vertex behaviors in
the structural and attributive space, a key to subsequent
social influence and information diffusion analysis.

Our contributions: (1) gAnomaly adopts an ex-
tended finite mixture model (FMM) [5] to interpret the
underlying attribute distributions. (2) We propose mul-
tiple network regularizers to account for the graph struc-
ture, and an entropy regularizer to facilitate the vertex
assignment into different mixture components. (3) An
iterative procedure is proposed to find more fine-grained
anomalies in challenging graphs. (4) Experiments on
both synthetic and real network data demonstrate the
effectiveness of our framework.

2 Problem Definition

gAnomaly identifies anomalies by modeling the under-
lying generative processes for vertex attributes. In a
vertex-attributed graph, there might exist regions whose
distribution of attributes significantly deviates from the
majority. Using the previous example, if we consider
the attribute “infected” which has two values, {“Yes”,
“No”}, there could exist regions with an abnormally
higher percentage of infected people.

Let G = (V,E,A) be an undirected vertex-
attributed graph. V is the vertex set, E is the edge
set, and A is a function that maps a vertex to an at-
tribute value, A : V → A, where A is the set of dis-
tinct attribute values in G. For the ease of presen-
tation, we assume there is only one attribute, which
has binary values. Without loss of generality, assume
A = {1(black), 0(white)}. gAnomaly is extensible to
multiple attributes with categorical attribute values.

Problem Statement: Given a vertex-attributed
graph G of black and white vertices, assuming the white
vertices are the majority, our goal is to uncover anoma-
lous subgraphs where a much higher percentage of black
vertices occurs. The expected solution should balance
the trade-off between two factors: (1) The size of the

connected anomalous subgraphs; discovering small sets
of black vertices that are scattered is not interesting. (2)
The percentage of black vertices in the anomalies. The
solution ought to accommodate different propagation
models. For example, different diseases have different
spreading patterns in a social network. In the epidemic
of a contagious disease such as flu, the neighbors of an
infected individual are likely infected too; while for a
non-contagious genetic disease, two patients can be one
or two hops away. In addition, the solution should be
robust against noisy and missing data, which is normal
in social and communication networks.

3 Data Model and Regularization

We first make assumptions about how vertex attributes
are generated and create a model to describe them.
Inspired by the anomaly detection model in [5], we
employ a two-component mixture model to interpret
the observed data. Anomaly detection is materialized
essentially through assigning each vertex to one of the
mixture components. Let V (0) be the set of majority
(background) vertices, and V (1) the set of anomaly

vertices. V = V (0)
⋃
V (1), and V (0)

⋂
V (1) = ∅. Given

a vertex vi, with probability θ
(k)
i , vi belongs to class

V (k), k = {0, 1}. Let P be a mixture model interpreting
the overall distribution for a vertex, we have

P (vi) =

1
∑

k=0

θ
(k)
i P

(k)(vi),(3.1)

where {θ
(0)
i , θ

(1)
i } is the vertex-dependent mixture

weights and θ
(0)
i + θ

(1)
i = 1. P (0) is the background

model, and P (1) is the anomaly model. P (k)(vi), k =
{0, 1} is the conditional likelihood of observing vi,
given model P (k). Depending on the mixture weights

{θ
(0)
i , θ

(1)
i }, each vertex is better explained by either the

anomaly model, P (1), or the background model, P (0).

3.1 Bernoulli Mixture Model Since we assume
there is only one attribute in G, each vertex either has
attribute value 1 (containing this attribute) or 0 (oth-
erwise). Let Xi = {1, 0} be a Bernoulli random vari-
able indicating if vi has this attribute. We can model
each component P (k) as a Bernoulli distribution. Let
p
(k) = (p(k)(1),p(k)(2))T be the outcome probabilities

in this distribution. p
(k)(1) + p

(k)(2) = 1.1 p
(k)(1) is

the probability for a vertex to contain the attribute in
this mixture component.

P
(k)(vi) = p

(k)(1)Xi(1− p
(k)(1))1−Xi .(3.2)

gAnomaly is extensible to more complicated data mod-
els. If there are multiple independent attribute types,

1In this paper, we typeset vectors in boldface (e.g., p(k)) and
use parentheses to denote an element in the vector (e.g., p(k)(1)).
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we can model each of them separately and multiply the
likelihoods. If an attribute has more than two distinct
values, we can model P (k) using a categorical distribu-
tion. gAnomaly can also be extended to multiple levels
of anomalies, by setting the number of mixture compo-
nents to be greater than two.

In order to determine the best component model to
describe each vertex, we fit the model with the observed
data and compute the total data likelihood of V ,

L(V ) =

N
∏

i=1

P (vi) =

N
∏

i=1

1
∑

k=0

(

θ
(k)
i P

(k)(vi)
)

.(3.3)

For computational reasons, we compute the log-
likelihood to turn multiplication to addition,

ℓ(V ) =
N
∑

i=1

log P (vi) =
N
∑

i=1

log
1
∑

k=0

(

θ
(k)
i P

(k)(vi)
)

.(3.4)

However, simply maximizing the above likelihood over-
looks the network structure. It will generate the same
estimates even if we change the edge structure of G. In
fact, it will just group all black vertices together as the
anomaly and leave the white vertices as the background.
We thus employ network regularization to smoothen the
connectivity in each mixture component.

3.2 Network Regularizer If we group vertices
based on their color, it is bound to produce the high-
est data likelihood. However, such assignment produces
little practical value, because the vertices within the
same mixture component (class) are spread out in the
graph. In reality, it is desirable for vertices in the same
class to exhibit satisfying connectivity. A distinctive
feature of our model is to smoothen the mixture weights
across the graph, so that neighboring vertices have sim-
ilar model memberships. Inspired by the NetPLSA
model in [11], we employ a graph-based discrete reg-
ularizer. Such harmonic regularization is succinct and
intuitive: vertices which are connected should have sim-
ilar model membership priors, thus the mixture weights.
Let Θ be the N × 2 mixture weights matrix, where

Θ(i, k + 1) = θ
(k)
i is the mixture weight vertex vi has

for component P (k), k = {0, 1}. Let M i denote the i-th
row in a matrix M . The network regularizer in [11],

R
(0)
N (Θ), is formulated as,

R
(0)
N (Θ) =

1

2

∑

(vi,vj)∈E

1
∑

k=0

(θ
(k)
i − θ

(k)
j )2

=
1

2

∑

(vi,vj)∈E

‖Θi −Θj‖
2
,(3.5)

where ‖ · ‖ is the l2 norm of a vector. The essence of

R
(0)
N (Θ) is: by deducting this term from the data log-

likelihood in Equation (3.4), we can minimize the sum

of squared differences of the mixture weights of all con-

nected vertex pairs in G. R
(0)
N (Θ) is used to smoothen

the topic proportions of neighboring documents in [11].
Such regularization finds anomaly vertices with sat-

isfying connectivity among each other. Nonetheless,

R
(0)
N (Θ) suffers from one major drawback: it is biased

towards high-degree vertices. In other words, high-
degree vertices are affected more by the network regular-
izer than small-degree vertices. As a result, small-degree
vertices are usually separated to one component while
high-degree vertices stay together in the other compo-
nent. We call this the neighborhood size effect. To al-
leviate this problem, we propose two variations of the
network regularizer.

[Type 1: Minimizing Mean] R
(1)
N (Θ) minimizes

the sum of the average difference between the mixture
weights of a vertex and those of its neighbors, for all

vertices in G. R
(1)
N (Θ) is essentially a vertex degree-

normalized version of R
(0)
N (Θ).

R
(1)
N (Θ) =

1

2

∑

vi∈V

1

|N(i)|

∑

vj∈N(i)

1
∑

k=0

(θ
(k)
i − θ

(k)
j )2

=
1

2

∑

vi∈V

1

|N(i)|

∑

vj∈N(i)

‖Θi −Θj‖
2
,(3.6)

where N(i) is the set of neighbors of vertex vi, and | · |
denotes the cardinality of a set.

[Type 2: Minimizing Minimum] R
(2)
N (Θ) min-

imizes the smallest difference between the mixture
weights of a vertex and those of its neighbors, for all
vertices in G.

R
(2)
N (Θ) =

1

2

∑

vi∈V

min
vj∈N(i)

‖Θi −Θj‖
2
.(3.7)

Unlike the original network regularizer R
(0)
N (Θ), the ef-

fect of vertex degrees is discounted by either the average
or the minimum function in our proposed regularizers.

The rationales behind R
(1)
N (Θ) and R

(2)
N (Θ) are very

different. R
(1)
N (Θ) makes a vertex close to the majority

of its neighbors with respect to mixture weights. Using

R
(1)
N (Θ) helps a vertex to be assigned to the same class

as most of its neighbors. Intuitively, this contributes to
larger connected regions in each mixture component. In

contrast, R
(2)
N (Θ) makes a vertex close to the neighbor

that it has the most similar mixture weight with, which
most likely shares the same attribute value as the vertex

itself. Therefore R
(2)
N (Θ) further contributes to high at-

tributive homogeneity in each mixture component. Sec-
tion 7 empirically compares these two regularizers.

Regularizer choices depend on applications and
their information propagation mechanism. Therefore
there are alternative formulations. For example, instead
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of minimizing the minimum difference, we can minimize
the maximum difference. We can also modify Equa-
tion (3.6). Instead of assigning the same normalization
weight (1/N(i)) to all the neighbors, different emphasis
can be assigned to different neighbors. For instance, we
can assign higher weights to neighbors sharing the same
attribute as the root vertex. We experimented with such
alternatives, and observed no consistent advantages over
the aforementioned two regularizers. Thus in this pa-

per, we focus on R
(1)
N (Θ) and R

(2)
N (Θ).

3.3 Entropy Regularizer We further introduce the
entropy regularizer. It is possible that the learned two
mixture components are somewhat similar, because G
might not contain regions whose distribution is drasti-
cally different. In this case, the learned vertex mixture
weights are fairly balanced across the two components.
In order to assign vertices with confidence, we aim for
more sparsified or biased mixture weights. Since spar-
sified mixture weights correspond to lower Shannon en-
tropy, we incorporate an entropy regularizer to mate-
rialize this. It uses the sum of the negative entropy
functions of all vertices, on the mixture weights. In-
tuitively by favoring a larger value of such regularizer,
it results in more biased mixture weights. That is, the
mixture weights tend to be more focused on one com-
ponent, instead of being balanced across the two. Let
RE(Θ) denote the entropy regularizer.

RE(Θ) =
N
∑

i=1

(Θi logΘ
T
i ) =

N
∑

i=1

1
∑

k=0

(θ
(k)
i log θ

(k)
i ).(3.8)

We now enrich the original mixture model with the
network and entropy regularizers. The regularized data
likelihood over the entire vertex set has the form:

ℓ̂(V ) = ℓ(V )− λR
(τ)
N (Θ) + γRE(Θ)

=
N
∑

i=1

log
1
∑

k=0

(θ
(k)
i P

(k)(vi))

− λR
(τ)
N (Θ) + γ

N
∑

i=1

(Θi logΘ
T
i ),(3.9)

where ℓ(V ) is the log-likelihood of the mixture model,

R
(τ)
N (Θ) is one of the network regularizers, and RE(Θ)

is the entropy regularizer. λ and γ are the coefficients
associated with each regularizer, respectively. Note that
such a regularization framework can be generalized to
other forms of likelihood and regularization functions.

4 Parameter Estimation

Given the above mixture model, we detect anomalies
as follows: (1) learn the model parameters through
maximizing the overall data likelihood; (2) assign each
vertex to the best component, the anomaly or the
background, based on the learned parameters.

Although the expectation-maximization (EM) [15]
algorithm has been widely used to approximate the
maximum likelihood estimates (MLE) in mixture model
learning, a standard EM suffers from the drawbacks of
local optima and initialization dependence. To address
such drawbacks, deterministic annealing EM (DAEM)
has been proposed and applied to various mixture model
scenarios [7, 15]. DAEM reformulates the log-likelihood
maximization as the problem of minimizing the free
energy function by using a statistical mechanics analogy.
The posterior probability of latent variables further
includes a “temperature” parameter which controls the
influence of unreliable model parameters. The annealing
process of adjusting the temperature is able to reduce
the dependency on initial model parameters. Therefore
in this paper we adopt the DAEM approach, as outlined
in Algorithm 1, to learn our model parameters.

In the DAEM algorithm, maximizing the log-
likelihood of our mixture model, as shown in Equa-
tion (3.4), is reformulated as the problem of minimizing
a free energy function

fβ(Φ) = −
1

β

N
∑

i=1

log

1
∑

k=0

(θ
(k)
i P

(k)(vi))
β
,(4.10)

where 1/β is called the “temperature”, and Φ is the
set of model parameters, {Θ,p(k)}. The temperature
is initialized at a high value and decreases gradually as
the iterations proceed. When β = 1, the negative free
energy becomes the log-likelihood of our mixture model.

Maximizing the regularized data likelihood in Equa-
tion (3.9) is then reformulated into minimizing a regu-

larized free energy function, f̂β(Φ), where the network
and entropy regularizers are kept unchanged,

f̂β(Φ) = fβ(Φ) + λRN (Θ)− γRE(Θ).(4.11)

We now present details on the expectation (E) step and
maximization (M) step in the DAEM procedure.

4.1 E Step Let zi be the latent membership of vertex
vi. zi = k means that vi is assigned to component k.
Let Φt be the current estimate of the model parameters,

and w
(k)
i be the posterior probability of zi = k. In the

E step of a standard EM procedure, we calculate the
posterior distribution of zi as

w
(k)
i = P (zi = k|vi; Φ

t)

=
θ
(k)
i P (vi|zi = k;p(k))

∑1
l=0 θ

(l)
i P (vi|zi = l;p(l))

.(4.12)

The expectation of the complete log-likelihood with
respect to the posterior distribution P (zi|vi; Φt) is:

Q(Φ|Φt) =
N
∑

i=1

1
∑

k=0

w
(k)
i log

(

θ
(k)
i P

(k)(vi)
)

.(4.13)
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Algorithm 1: DAEM-Based Model Learning

Input: G = (V,E,A)
Output: Estimated parameters, p(k)’s and Θ

1 Initialize the mixture model parameters, and

β = β(0)(0 < β(0) < 1);

2 while f̂β(Φ) is not converged and β ≤ 1 do

3 E step: estimate the latent memberships of each

vertex, w
(k)
i (β)’s;

4 M step: update the model parameters via
minimizing Fβ(Φ|Φ

t);
5 Increase temperature parameter β;

6 Assign each vertex vi to a component;

7 return Estimated p
(k)’s, Θ;

In DAEM, the posterior probability of belonging to ei-
ther mixture component further contains the tempera-

ture parameter β. Let w
(k)
i (β) denote this new posterior

probability. As in [15], it is given by

w
(k)
i (β) = P (zi = k|vi; Φ

t
, β)

=

(

θ
(k)
i P (vi|zi = k; p(k))

)β

∑1
l=0

(

θ
(l)
i P (vi|zi = l;p(l))

)β
.(4.14)

Using Jensen’s inequality, we have

fβ(Φ) = −
1

β

N
∑

i=1

log

1
∑

k=0

w
(k)
i (β)

(θ
(k)
i P (k)(vi))

β

w
(k)
i (β)

≤ −
N
∑

i=1

1
∑

k=0

w
(k)
i (β) log(θ

(k)
i P

(k)(vi)).(4.15)

In the E step of DAEM, we estimate the expectation
of the complete log-likelihood with respect to the new
posterior distribution P (zi|vi; Φt, β) as follows, and

fβ(Φ) is upper bounded by −Q̂β(Φ|Φt).

Q̂β(Φ|Φ
t) =

N
∑

i=1

1
∑

k=0

w
(k)
i (β) log

(

θ
(k)
i P

(k)(vi)
)

.(4.16)

4.2 M Step M step boils down to minimizing a
regularized upper bound function, Fβ(Φ|Φ

t):

Fβ(Φ|Φ
t) = −Q̂β(Φ|Φ

t) + λRN (Θ)− γRE(Θ).(4.17)

In gAnomaly, we adopt the widely used L-BFGS [10]
algorithm for the optimization. Instead of storing the
dense Hessian approximation matrix during optimiza-
tion, L-BFGS saves only a few vectors to represent the
approximation, which significantly reduces the mem-
ory requirement. Since L-BFGS is a classic and well-
established algorithm [10], we omit the detailed analysis
on its complexity and convergence rate.

4.3 Vertex Assignment Upon the convergence of
the iterative DAEM process, the next step is to assign
each vertex to either the anomaly or the background
mixture component. We can subsequently use such
assignment to uncover anomaly regions in G. Let z∗i be
the component/class label that vi is assigned to after
convergence. z∗i can be estimated using the updated
mixture weight matrix at the time of convergence.

z
∗
i = argmax

k
θ
(k)
i ,(4.18)

where z∗i is estimated as the label of the mixture
component for which vi has the highest mixture weight.

5 Iterative Anomaly Detection

gAnomaly so far makes two assumptions: (1) There
are only two generative processes, anomaly and back-
ground. (2) The size of the anomaly is comparable to
that of the background. However, real-world networks
might violate such assumptions. We therefore propose
an iterative procedure to account for challenging sce-
narios: (1) There are more than two attribute distri-
butions. (2) The size of the anomaly is small. This
procedure iteratively removes the background and refo-
cuses the search within the anomaly. In each iteration,
the two-component mixture model is applied on the cur-
rent graph, and classify the vertices into anomaly and
background. Only the anomaly-induced subgraph is fed
into the next iteration. This continues until an anomaly
with desirable size and attribute distribution is found.

Figure 2: Iterative Fine-Grained Anomaly Detection

Figure 2 shows how such iterative process works
on a small example. Suppose we have a graph whose
vertex attributes are generated by three distributions,
an anomaly distribution with the highest probability of
black vertices, a background distribution with the low-
est probability of black vertices, and a noise distribution
that lies in between. The red region is the anomaly re-
gion, the blue region is the noise region, and the rest
is the background. If the noise region is significantly
larger than the anomaly region, a non-iterative model
will most likely fail to identify the red anomaly region.
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We address this through iteration. As shown, the itera-
tion starts off with labeling both the anomaly and noise
as anomaly, and gradually shrinks the boundary of the
anomaly (red dotted line), until the most anomalous re-
gion of the graph is located. There are two possible
stop conditions: (1) The iteration stops when the un-
covered anomaly size is ±ρ of the desirable size (ρ is
user-specified); or (2) it stops when the percentage of
black vertices in the anomaly exceeds a threshold.

6 Performance Measurement

We evaluate the algorithms using the largest anomaly,
S0, discovered in the original graph. Two variables are
extracted: (1) the percentage of black vertices in S0; (2)
the number of vertices in S0.

6.1 Mahalanobis Distance M-distance is a multi-
variate version of z-score. It gauges the distance of an
observation from the centroid of a multivariate distri-
bution, given the covariance of the distribution. We
use it to evaluate if the pattern found in the original
graph is a multivariate outlier against random cases.
The following steps are taken: (1) Retrieve the pat-
tern S0 in G. Let B(S0) and |S0| be the percentage
of black vertices in S0, and the size of S0, respec-
tively. (2) Randomly shuffle the vertex attributes in
G, while keeping the total number of black vertices.
Let {G1, . . . , Gr} be the r randomly-shuffled graphs.
(3) Create a reference random sample set by retriev-
ing the pattern Si from Gi in the same manner. Let
B(Si) and |Si| be the respective two variables. (4) Let
~Si = (B(Si), |Si|)T , i = {0, 1, . . . , r}, and ~µ be the mean

of the random samples { ~S1, . . . , ~Sr}. The M-distance of
~S0 is computed as:

(6.19) DM ( ~S0) =

√

( ~S0 − ~µ)TΣ−1( ~S0 − ~µ),

where Σ is the covariance matrix of the r random
samples. A larger M-distance means a higher deviation
from random cases.

6.2 Pattern Probability We use pattern probabil-
ity to measure how “rare” a pattern is inG, without con-
sidering the pattern structure. We model an anomaly
region using a binomial distribution. Let Pb denote the
percentage of black vertices in G. Pb is considered as
the probability to observe black vertices. Let N b

0 be the
number of black vertices in S0. The probability of ob-
serving N b

0 or more black vertices from a set randomly
chosen vertices with size |S0| is:

(6.20) P (S0) =

|S0|
∑

n=Nb
0

(

|S0|

n

)

P
n
b (1− Pb)

|S0|−n
.

A smaller pattern probability means a higher abnormal-
ity of S0.

7 Experimental Evaluation

We evaluate gAnomaly using both synthetic and real-
world networks. For the ease of presentation, we only
show results using one attribute of interest with binary
values in each network.

Last.fm Network. This is a subgraph of the
Last.fm network in [18], with 5,000 users and 6,789
friendships. Vertex attributes are the artists the users
listened to. Black vertices contain the most popular
attribute “Radiohead” (1,978 vertices) [18].

Synthetic Last.fm Networks. Each synthetic
network is the previous Last.fm network annotated with
synthetic vertex attributes. (1) Group I: The attributes
are generated from two distributions: anomaly and
background. The black probability for the anomaly, ωA,
varies from 60%, 70%, 80% to 90%; for the background,
it varies from 40%, 30%, 20% to 10%. The anomaly re-
gion size is 30% of the network (randomly chosen). (2)
Group II: The attributes are generated from three dis-
tributions: anomaly, noise and background. The black
probability in each is 95%, 30%, and 5%, respectively.
The anomaly region size varies from 1%, 5%, to 10%,
and the noise region size is 20%. The purpose of Group
II networks is to evaluate the iterative detection process
for fine-grained anomaly detection.

Cora Network. The Cora network2 contains
2,708 publications and their 5,429 citations relations.
Publications are attributed as: {“Case Based”, “Ge-
netic Algorithms”, “Neural Networks”, “Probabilistic
Methods”, “Reinforcement Learning”, “Rule Learning”,
“Theory”}. Black vertices are those containing the most
prevalent attribute, “Neural Networks” (818 vertices).

DBLP Networks. A network of 6,307 authors and
8,709 collaborations is extracted from DBLP. There is
an edge between two authors if they have coauthored
at least five papers. Each author is attributed with
a research field. We use two versions of this network:
DBLP-IR and DBLP-DM, where black vertices contain
the attribute “Information Retrieval” (795 vertices) and
“Data Mining” (1,096 vertices), respectively.

We compare gAnomaly with the state-of-art prob-
abilistic graph clustering algorithm BAGC (Bayesian
Attributed Graph Clustering) [21], a Bayesian model
where vertices grouped into one cluster share com-
mon attribute and edge distributions. The comparative
study aims to see which method is better at uncovering
non-random abnormal subgraphs. The entropy regular-
izer coefficient γ is set as 0.5, and 100 random samples
are generated for M-distance computation.

2http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
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Figure 3: M-Dist & Pattern-Prob on Group I, ωA = 0.9
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Figure 4: M-Dist & Pattern-Prob on Group I, λ = 0.01

7.1 Results on Synthetic Data For Group I, M-
distance and pattern probability are used. We then use
F1 score on Group II to evaluate gAnomaly on retrieving
true anomalies in challenging scenarios.

7.1.1 Group I: Graphs With Two Generative
Processes Figure 3 shows how the two metrics change
with λ on the Group I synthetic network with ωA = 0.9.
Both versions of gAnomaly outperform BAGC in M-
distance when λ <= 0.1, and in pattern probability
for all λ’s. Performance of gAnomaly decreases as λ
increases. This is because when λ is large, the patterns
tend to be larger with less fraction of black vertices.

In comparison with R
(1)
N , R

(2)
N is less sensitive to λ,

yielding good abnormality measures even for large λ.

This conforms with the intuition of R
(2)
N . Figure 4 shows

how gAnomaly and BAGC perform with varying ωA

on λ = 0.01. Both versions of gAnomaly significantly

outperform BAGC on all networks. R
(1)
N outperforms

R
(2)
N for λ = 0.01, since it generates larger patterns

than R
(2)
N . The performance improves as the difference

between anomaly and background increases.

7.1.2 Group-II: Graphs With Multiple Gener-
ative Processes Now we evaluate the iterative detec-
tion process using more challenging networks: (1) there
are more than two generative processes; (2) the fraction
of anomaly is small. Group II synthetic networks are
tested using F1 score to measure the quality of anomaly
retrieval. Figure 5(a) shows how F1 changes with the
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Figure 7: M-Dist & Pattern-Prob on Real Networks

size of the anomaly region (ρ = 5%). How F1 changes
with ρ (anomaly region size is fixed to 1%) is shown
in Figure 5(b). With the iterative process, gAnomaly

yields good F1 performance, and beats BAGC signifi-
cantly. Figure 6 shows one case of iteration convergence

using gAnomaly and R
(1)
N , where the anomaly region is

1%, and the stop threshold is 5%. We can see that the
iteration starts off with a large anomaly region with a
small fraction of black vertices; as the iteration contin-
ues, gAnomaly gradually shrinks the anomaly region and
increases the percentage of black vertices within, until
the iteration converges to a desirable anomaly size.

7.2 Results on Real Data In this section, we report
results on real networks. Figure 7 shows the results with
λ = 0.01. gAnomaly significantly outperforms BAGC on
all but DBLP-DM. The performance of gAnomaly de-
pends on the structure and pattern distribution within
the network. If the network does not contain a signif-
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Figure 9: DBLP Case Studies

icant anomaly region, gAnomaly is not able to identify
it; or if the anomaly consists of many cohesive patterns,
BAGC will do better than gAnomaly. Figure 8 visualizes
the M-distance of S0 in each original network, to a set of
patterns uncovered from randomized networks with the
attributes shuffled. The blue circles are the anomalies
found in the 100 random samples, {S1, . . . , S100}, and
the red star is S0. The numeric value of the M-distance
can be obtained by looking up the star color in the color
bar. The distance from S0 to the centroid of the ran-
dom samples indicates the power of the algorithm for

anomaly detection. R
(2)
N is used in gAnomaly. As show,

M-distance is much more significant in gAnomaly than
BAGC, especially on Cora, DBLP-IR, and DBLP-DM.

7.3 Case Studies We further conduct case studies
on the DBLP networks to examine the semantics of
the anomalies. Figure 9 shows a portion of the anoma-
lies gAnomaly uncovers from DBLP-IR and DBLP-DM.
Black authors are those attributed as from the respec-
tive field. For example in Figure 9(a), Chengxiang Zhai
has the attribute “Information Retrieval”, whereas Ge-
oge Karypis does not. We use the author attributes
provided by [21]. Our observations are: (1) For a spe-
cific research field, gAnomaly uncovers a continuous re-
gion with a high concentration of authors from this field.
(2) The uncovered region is not necessarily densely con-
nected, since gAnomaly is not looking for cliques or
near-cliques. (3) The region contains a small fraction
of authors not from this field. gAnomaly includes such

“bridge” authors so that a region can span across mul-
tiple research groups. Upon finding such anomalies, it
is useful to further study user behaviors and conduct
localized network influence analysis.

8 Related Work

Various studies exist on pattern mining in attributed
graphs [8, 9, 13, 21, 22]. [13] introduces cohesive pattern,
a connected dense subgraph with homogeneous feature
values. [21] proposes a model to discover graph clusters
within which vertices share common attribute and edge
connection distributions. [22] addresses a similar prob-
lem through graph augmentation and a unified struc-
tural and attributive distance measure. All the above
patterns tend to be dense in connectivity. In contrast,
we aim to find anomalies with arbitrary edge densities.

Another related topic is graph anomaly detec-
tion [1, 2, 3, 4, 6, 12, 14, 16].[6] is closely related. How-
ever, it has to be modified significantly to suit our pur-
poses, as its current model is not as flexible as our net-
work regularizers. For example, it can not model the
influence of the most similar neighbor. [1] finds abnor-
mal vertices in an edge-weighted graph by examining
their “ego-nets” against certain rules. [12] turns the ad-
jacency matrix into transition matrix, and models the
anomaly detection as a Markov chain process. [2] pro-
poses a parameter-free graph clustering algorithm to
find vertex groups, and further finds anomalies by com-
puting distances between groups. Inspired by fraud de-
tection, [4] defines a graph substructure as anomaly if

89 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



it is isomorphic to the normative substructure within a
certain amount of vertex or edge modifications. [14] uses
the MDL principle to uncover infrequent anomalies. [3]
extends [14]’s techniques to address numeric vertex at-
tributes. [16] proposes a Bayesian spatial scan frame-
work for event detection. All the above methods can not
uncover the type of anomalies addressed in this work.

Probabilistic models are widely used in graph min-
ing [5, 6, 11, 19, 20]. [11] extends PLSA in a network
environment using a harmonic regularizer based on the
network structure. [5] applies a mixture model to un-
supervised intrusion detection, when the percentage of
anomalous elements is small. [20] addresses feature se-
lection via learning a Dirichlet process mixture model
in the high dimensional feature space of the graph data.
Many techniques have also been explored to regularize a
mixture model to appeal to specific applications [11, 17].

9 Conclusions

We propose a probabilistic approach using a mixture
model with regularization to detect graph anomalies,
graph regions exhibiting significantly different attribute
distributions. Future directions include: (1) extend the
model to account for networks with rich content, such
as edge direction and weight; (2) incorporate temporal
information to detect anomalies in dynamic graphs; (3)
conduct causal analysis among anomalies.
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