
On Node Classification in Dynamic Content-based Networks

Charu C. Aggarwal∗ Nan Li†

Abstract

In recent years, a large amount of information has become

available online in the form of web documents, social net-

works, blogs, or other kinds of social entities. Such networks

are large, heterogeneous, and often contain a huge number

of links. This linkage structure encodes rich structural

information about the underlying topical behavior of the

network. Such networks are often dynamic and evolve

rapidly over time. Much of the work in the literature has

focussed either on the problem of classification with purely

text behavior, or on the problem of classification with purely

the linkage behavior of the underlying graph. Furthermore,

the work in the literature is mostly designed for the problem

of static networks. However, a given network may be

quite diverse, and the use of either content or structure

could be more or less effective in different parts of the

network. In this paper, we examine the problem of node

classification in dynamic information networks with both

text content and links. Our techniques use a random walk

approach in conjunction with the content of the network in

order to facilitate an effective classification process. This

results in an effective approach which is more robust to

variations in content and linkage structure. Our approach is

dynamic, and can be applied to networks which are updated

incrementally. Our results suggest that an approach which

is based on a combination of content and links is extremely

robust and effective. We present experimental results

illustrating the effectiveness and efficiency of our approach.

Keywords: Graph Classification, Structural Classifi-
cation, Label Propagation

1 Introduction

In recent years, there has been an explosion of text
content on the web in a variety of forms. In addition
to the standard forms of content such as web pages, an
enormous amount of content may be found in the form
of blogs, wikis, and other forms of social media. Such
networks are often a challenge for mining algorithms

∗IBM Thomas J. Watson Research Center, Email:
charu@us.ibm.com.

†University of California at Santa Barbara, Email:
nanli@cs.ucsb.edu.

because they often contain both structure and content.
Some examples of such networks include author citation
networks, co-authorship networks, product databases
with large amounts of text content, and so on. Such
networks are highly dynamic and may be frequently
updated over time. For example, new nodes may
constantly be created in the network, as new postings
are created in a blog network; similarly old nodes may
be deleted, as old postings are deleted. As a result the
structure of the network may be quite dynamic, and
may vary over time. In the most general case, we model
our problem as a graph of nodes, each of which may
contain text content.

A key problem which often arises in these domains
is that of node classification [1, 2]. The classification
problem arises in the context of many network scenarios
in which the underlying nodes are associated with
content. In the node classification problem, it is
assumed that a subset of the nodes in the network may
be labeled. It is desirable to use these labeled nodes
in conjunction with the structure and content for the
classification of nodes which are not currently labeled.
For example, many blogs or other network documents
may naturally belong to specific topics on the basis of
their content and linkage patterns. However, most such
documents may not be formally associated with labels in
social networking scenarios because of a lack of resources
available for a human-centered labeling process. In
this paper, we will address the classification problem,
in which it is desirable to determine the categories of
the unlabeled nodes in an automated way with the use
of both structure and content of the network. The
presence of labels on a subset of the nodes provides
the implicit training data which can be leveraged for
learning purposes.

The node classification problem is particularly chal-
lenging in the context of very large, dynamic, and evolv-
ing social and information networks. In particular, a
number of natural desiderata are applicable in the de-
sign of classification algorithms in this scenario. These
desiderata are as follows:

• Social and information networks are very large, as a
result of which link classification algorithms need to
be efficient. This can be particularly challenging,
if we intend to use both text and links during

the classification process. The addition of text
content to the linkage information is responsible for
a considerable increase in the size of the underlying
network representation.

• Many such networks are dynamic, and are fre-
quently updated over time. Since the structure of
the network may constantly change over time, the
underlying classification model may also change.
Therefore, the model needs to be efficiently up-
datable in real time in order to account for such
changes. Such a dynamic model also needs to be
easy to use, so that the end-process of classification
can be achieved without too much overhead.

• Such networks are often noisy, as many of the links
and content features may not be relevant to the
classification process. In addition, different por-
tions of the network may be better suited to dif-
ferent kinds of classification models. For example,
some portions of the network may be better clas-
sified with structure, whereas other portions may
be better classified with content. We need to de-
sign a classifier, which can make such decisions in
a seamless way, so that the appropriate parts of
the network may be used most effectively for the
classification process.

The problem of classification is widely studied in
the data mining community [7]. The problem has been
studied in the context of both structural [3, 4, 10] and
content-based [9, 12, 13, 16] analysis. Two natural
choices can be used for classification of content-rich
networks:

• The most straightforward approach is to directly
use text classifiers in order to perform the classifi-
cation. A variety of text classifiers are available for
this purpose. A detailed evaluation of techniques
for text categorization may be found in [13, 16].
However, such an approach ignores the rich struc-
tural information which is often available in the
context of a network.

• A second way to perform the classification is by us-
ing the information which is latent in the underly-
ing link structure. For example, effective methods
have been proposed in [10] in order to perform link-
based classification. Similar techniques have been
used in [3] in order to label blogs for classification.
However, these methods fail to leverage the infor-
mation which is available in the underlying content
for classification purposes.

It is clear that both text and links encode impor-
tant information about the underlying network. Fur-
thermore, these provide different views of the underlying

information. For example, the text provides ideas about
content, whereas the linkage behavior provides informa-
tion about interconnectedness between different kinds of
nodes, some of which may be used for classification. The
latter is especially the case, when the content in a given
node is limited and the linkage information provides an
idea of the relationships of the test node with other
labeled nodes. On the other hand, the content can be
used to glean better classification insights when the link-
age structure is either sparse or not informative enough
to provide information about the classification behavior
of the underlying node. Therefore, it makes sense to
examine whether it is possible to combine text and link-
age behavior in order to perform robust classification,
which works more effectively in a generic scenario. Fur-
thermore, such an integration must be seamless, in that
it should be able to automatically use the most effective
strategy in a given scenario. This paper will propose a
random walk approach, which combines text and linkage
behavior, and show that it can be used in a seamless way
in order to perform more robust classification. We will
refer to this algorithm as DYCOS, which corresponds to
the fact that it is a DYnamic Classification algorithm
with cOntent and Structure. Furthermore, the approach
is dynamic, and scalable to large networks, as it can be
applied to large, and rapidly updatable networks.

This paper is organized as follows. We will discuss
related work in the remainder of this section. In
Section 2, we will introduce a dynamic random-walk
model for classification with text and links. Section 3
shows how the DYCOS algorithm leverages this model
for the classification process. The experimental results
are presented in Section 4. Section 5 presents the
conclusions and summary.

1.1 Related Work The problem of text classifica-
tion [9, 12, 13, 16]. has been studied widely in the
information retrieval literature. Detailed surveys may
be found in [13, 16]. In the context of the web and
social networks, text classification poses a significant
challenge, because the text is often drawn from hetero-
geneous and noisy sources which are often hard to model
with a standardized lexicon. Some of the earliest work
on the use of linkage techniques to enhance classification
may be found in [5]. This work uses the text content in
adjacent web pages in order to model the classification
behavior of a web page. However, it is not focussed on
the problem of node-classification in a partially labeled
graph of documents.

The problem of node classification has also been
studied in the graph mining literature, and especially
relational data in the context of label or belief propaga-
tion [14, 18, 19]. Such propagation techniques are also

used as a tool for semi-supervised learning with both
labeled and unlabeled examples [21]. A technique has
been proposed in [10], which uses link-based similarity
for node-classification. Recently, this technique has also
been used in the context of blogs [3]. However, all of
these techniques use link-based methods only. Some re-
cent work has been done on the clustering problem with
content and links [20]. Another work [4] discusses the
problem of label acquisition in the context of collective
classification. Label acquisition is an important prob-
lem, because it is required in order to provide the base
data necessary for classification purposes. A method to
perform collective classification of email speech acts has
been proposed in [6]. It has been shown that the anal-
ysis of relational aspects of emails (such as emails in a
particular thread) significantly improves the classifica-
tion accuracy. It has also been shown in [5, 17] that
the use of graph structures during categorization im-
proves the classification accuracy of web pages. While
these methods provide a limited application of struc-
tural information, they are not designed to work for
massive and dynamic networks which may constantly
evolve over time. This paper provides a first approach
to the problem of efficient and dynamic node classifi-
cation in a massive labeled network, where both text
and node labels are available for classification purposes.
Much of the work proposed recently is not applicable
to the case of massive information networks in a dy-
namic scenario because of scalability issues. We will
use carefully designed summary structures which can ef-
ficiently perform such a classification. We will show that
the use of both sources in the classification process pro-
vides an effective classification technique in such mas-
sive networks. Furthermore, we design our technique to
work effective for massive and dynamic networks which
may constantly evolve over time. We will show that our
method will show considerable improvements over other
existing methods.

2 Node Classification Model with Text and
Links

We will first introduce some notations and definitions
which are relevant to the node classification problem.
We assume that we have a large network containing a set
of nodes Nt at time t. Since, the approach is dynamic,
we use a time-subscripted notationNt in order to denote
the changing nodes in the network. A node in Nt may
correspond to a blog post, a social network profile page,
or a web page. We also assume that a subset Tt of
these nodes Nt may be labeled. These nodes form the
training nodes, and they contribute both linkage and
text information for classification purposes. We assume
that the nodes in Tt are labeled from a total of k classes,

which are drawn from the set {1 . . . k}. As in the case
of the node set Nt, the set Tt is not static, but may
dynamically change over time, as new labeled nodes
may be added to the network. For example, either a
new labeled node may be added to both Nt and Tt,
or an existing node in Nt may be initially unlabeled
(and therefore not a part of the training data), but may
eventually be labeled, when new training information
is received. In the latter case, we add that node to
Tt. Similarly, the set of edges at time t is denoted
by At. Furthermore, new labels may be acquired for
different nodes over time, as a result of which the set
Tt may change as well. Clearly, this dynamic setting
is extremely challenging, because it implies that the
training model may change rapidly. The entire network
is denoted by Gt = (Nt,At, Tt) at a given time t.

In order to achieve our goal, the DYCOS approach
will construct a summary representation which is based
on both text and link structure. In order to perform
the classification, we will create a text-augmented rep-
resentation of the network, which is leveraged for classi-
fication purposes. We will show how to implement this
summary representation efficiently, so that it is possible
to use it effectively in a network. Our broad approach is
to construct an intuitive random walk based approach
on the network, in which both text and links are used
during the walk process for classification. The level of
importance of text and links can either be controlled
by a user, or it can be inferred in an automated way,
as discussed below. Since we intend to design classifi-
cation techniques which use the underlying content, it
is useful to first determine the words which are most
discriminative for classification purposes. The ability
to select out a compact classification vocabulary is also
useful in reducing the complexity and size of the model
at a later stage. The discriminative quantification of a
given word from the corpus is performed with the use
of a well known measure known as the gini-index. We
dynamically maintain a sample reservoir St of labeled
documents in the collection, and use them for the pur-
poses of computing the gini-index. For this purpose, we
can use the reservoir sampling algorithm discussed in
[15]. From time to time, we compute the gini-indices in
order to compute the discriminative power of the differ-
ent words. The frequency of updating the gini-indices
can be either equivalent to or less than the frequency
the network is dynamically updated. For a given word
w, let p1(w) . . . pk(w), be the relative fractional presence
of the word w in the k different classes. In other words,
if n1(w) . . . nk(w) be the number of pages in the sample
S which contain the word w, then we estimate pi(w) as

follows:

(2.1) pi(w) = ni(w)/
k∑

j=1

nj(w)

Then, the gini-index G(w) for the word w is computed
as follows:

(2.2) G(w) =

k∑

j=1

pj(w)
2

The value of G(w) always lies in the range (0, 1). If the
word is evenly distributed across the different classes,
then the value ofG(w) is closer to 0. On the other hand,
if the word w has a preponderance in one of the classes,
then the value of G(w) is closer to 1. Thus, words which
have a higher value of G(w) are more discriminative
for classification purposes. As a first step, we pick a
set Mt of the top m words which have the highest
value of G(w) and use them in order to construct
our structural node classification model. The set Mt

represents the active vocabulary which is useful for
classification purposes. In our current implementation
(Section 4), Mt is updated at the same pace as the
dynamic network is updated. Nonetheless, we note
that Mt does not need to be updated at each time
instant t. Rather, it can be updated in batch at specific
instants in time, with a much less frequency compared
to that the network is updated. The discriminatory
indices of the words are analyzed periodically, and the
most discriminatory words are used for classification
purposes. These discriminative words are used in order
to create a new semi-bipartite representation of the
network which is useful for classification purposes.

2.1 The Semi-Bipartite Content-Structure
Transformation One of the goals of the DYCOS
algorithm is to create a model which can deal with
the content and links in a seamless way for the
transformation process. For this purpose, both the
content and the original links are transformed into
a structural representation, which is referred to as
the semi-bipartite content-link transformation. The
set Mt provides a more compact vocabulary which is
used in order to create a semi-bipartite content-link
transformation. The semi-bipartite representation is
a graph in which one partition of nodes is allowed to
have edges either within the set, or to nodes in the
other partition. The other partition is only allowed
to have edges to the first, but it does not have any
edges within the set. Therefore, it is referred to as
semi-bipartite, as only one of the two node sets satisfies
the bipartite property. The semi-bipartite content-link

1

2

3

4

STRUCTURAL NODES

WORD NODES

DASHED LINES => WORD PRESENCE IN NODES

Figure 1: The Semi-bipartite Transformation

transformation defines defines two kinds of nodes: (i)
The first kind are the structural nodes which are the
same as the original node set Nt. This set inherits
edges from the original network. (ii) The second kind
of nodes are the word nodes which are the same as the
discriminative vocabularyMt.

Then, we construct the semi-bipartite graph Ft =
(Nt ∪ Mt, At ∪ A′

t), in which Nt and Mt form the
two sides of the bipartite partition. The set At is
inherited from the original network, whereas A′

t is
constructed on the basis of word-presence in the text
in different network nodes. Specifically, an undirected
edge exists between the information network node i ∈
Nt, and the word node j ∈ Mt, if the corresponding
word is contained in the information node i. Thus,
the edges in At are within a partition, whereas the
edges in A′

t are across the partition. An example of
this transformation is illustrated in Figure 1. The
node set which corresponds to the structural nodes
has edges which are indicated by solid lines, whereas
the connections between structure and content nodes
are illustrated by dashed lines. Thus, a walk from
one node to another may use either solid or dashed
lines. This provides a way to measure proximity both
in terms of link and content. The ability to utilize
such proximity in the context of a classification process
helps us combine links and content in a seamless way
for classification in terms of the structural proximity in
the new transformed network.

In addition, a number of data structures are re-
quired in order to allow efficient traversal of the text and
linkage structure in our random-walk approach. These

data structures are as follows: (1) For each of the word
nodes w ∈ Mt, we maintain an inverted list contain-
ing the set of node identifiers which contain the word
corresponding to w. We assume that the set of nodes
pointed to by word i is denoted by Pi. (2) For each of
the original set of nodes Nt in the network structure,
we maintain an inverted list of words contained in the
corresponding document. The set of words pointed to
by node i is denoted by Qi. (3) For each node iden-
tifier, we maintain information about its class label, if
the node is labeled. Otherwise, we simply maintain the
meta-information that the node is not labeled.

We note that total size of all the inverted lists Pi

for different values of i is at most equal to the text size
of the collection, if it is represented in terms of only the
discriminative words. Similarly, the total size of all the
inverted lists Qi for different values of i is at most equal
to the discriminative text collection size. These inverted
lists can be updated easily during addition or deletion of
nodes to the collection. During addition or deletion of
nodes, we need to either add to or delete from inverted
lists Pi, such that word i is contained in the added or
deleted node. We also need to add (delete) an inverted
list Qr corresponding to the newly added (removed)
node r. We note that this incremental update process is
extremely efficient, and can be dynamically performed
for a data stream. From time to time, we may also want
to adjust the word nodes, depending upon the change
in discriminatory behavior. In such cases, we need to
add or delete corresponding word nodes. The process
of updating the inverted lists is similar to the previous
case. The update process can also be efficiently applied
to a node, when the content within a node changes. In
this cases, the corresponding links between the structure
and content nodes need to updated.

3 Classification with Text and Link-based
Random Walks

In this section, we will describe the classification ap-
proach of the DYCOS algorithm. The use of both con-
tent and links during the random walk process is crit-
ical in creating a system which provides effective clas-
sification. Since random walks can be used to define
proximity in a variety of ways [8], a natural approach
is to construct proximity-based classifiers which use the
majority labels of random walk nodes for the propa-
gation process. Since the text is included within the
node structure of the semi-bipartite graph, it follows
that a random walk on this graph would implicitly use
both text and structural links during the classification
process. The starting node in this random walk is the
unlabeled node in Nt which needs to be classified. Of
course, we would also like to have a way to control the

relative impact of text and structural nodes during the
classification process. We note that a straightforward
use of a random walk over the semi-bipartite graph Ft

may not be very effective, because the walk can get lost
by the use of individual word nodes in the random walk.
In order to be able to control this relative importance,
we will define the walk only over the structural nodes
with implicit hops over word nodes. Specifically, a step
in the random walk can be one of two types:
(1) The step can be a structural hop from one node in
Nt to another node in Nt. This is a straightforward step
from one node to the next with the use of a link in the
original graph. If such a link does not exist, then the
structural hop teleports to the starting node.
(2) The step can be a content-based multi-hop from a
node in Nt to another node in Nt. This step uses the
linkage structure between the structural and word nodes
during the hop. Thus, each hop really uses an aggregate
analysis of the word-based linkages between one struc-
tural node inNt and another structural node inNt. The
reason for this aggregate analytical multi-hop approach
is to reduce the noise which naturally arises as a result
of the use of straightforward walks over individual word
nodes in order to move from one structural node to the
other. This is because many of the words in a given doc-
ument may not be directly related to the relevant class.
Thus, a walk from one structural node to the other with
the use of a single word node could diffuse the random
walk to less relevant topics.

We will discuss more details about how this content-
based multi-hop is computed slightly later. We use a
statistical analysis of the nodes encountered during the
random walk in order to perform the classification. A
key aspect here is to be able to control the importance of
structure and content during the hops. For this purpose,
we use a structure parameter ps. This parameter defines
the probability that a particular hop is a structural hop
rather than a content hop. When the values of ps is set
at 1, then it means that content is completely ignored
during the classification process. On the other hand,
when the value of ps is set at 0, then it means that only
content is used for classification. We will discuss more
details about the classification process below.

3.1 Classification Process The process of classifi-
cation uses repeated random walks of length h starting
at the source node. The random walk proceeds as fol-
lows. In each iteration, we assume that the probability
of a structural hop is ps. Otherwise, a content multi-hop
is performed with probability (1 − ps). By varying the
value of ps, it is possible to control the relative impor-
tance of link and content in the classification process.
While defining the length of a walk, a content-hop is

defined as a single hop in the same way as a structural
hop, even though a content walk is really performed us-
ing analysis of intermediate word nodes. A total of l
such random walks are performed. Thus, a total of l · h
nodes are visited in the random walk process. These
nodes may either belong to a particular class, or they
may not be labeled at all. The most frequently encoun-
tered class among these l · h nodes is reported as the
class label. If no labeled node is encountered through
all random walks (which is a very rare situation), DY-
COS simply reports the most frequent label of all nodes
currently in the network. This is specific to the cur-
rent time stamp and does not depend on the particular
source node. A high-level pseudo-code sketch of the
classification algorithm is presented in Algorithm 1.

Data: Network Gt = (Nt,At, Tt), number of
random walks, l, walk length, h, structural
hop probability, ps

Result: Classification of Tt, accuracy, θ
1 for Each node v in Tt do
2 for i from 1 to l do
3 Perform an h-hop random walk from v,

with structural hop probability, ps;

4 Classify v with the class label most
frequently encountered;

5 θ ← the percentage of nodes correctly classified;
6 Return classification labels and θ;

Algorithm 1: DYCOS Classification Process

Next, we will discuss the efficient implementation
of structural and content hops. This is done with the
use of the inverted indices which are available at the
different nodes of the graphs. At each node in the
random walk process, we flip a coin with probability
ps. In the event of a success, we perform a structural
hop; otherwise we perform a content hop. Structural
hops are straightforward, because we only need to look
up the adjacency list for that node, and perform the
corresponding hop.

For the case of the content-based hops, a two-step
approach is required. First, we need to determine the
nodes with the top-q most frequent 2-hop paths from a
node in Nt to another node in Nt with the use of an
intermediate word node. The first step is to determine
all the nodes which are reachable in paths of length
2. Let the relative frequency of the number of 2-
hop paths which lead to these q nodes be denoted by
r1 . . . rq. Then, we sample the ith among these nodes
with probability ri. By truncating the random walk
process to only the top-q nodes, we ensure that the
random walk is not lost because of non-topical words in

the documents. In order to actually perform the walk,
we need to use the inverted lists at the nodes in Nt and
Mt. For each node in Nt, we can determine the word
nodes contained in it. Then, for each word node, we
can determine the structural nodes which contain that
word. This can again be achieved by using the inverted
lists at the word nodes. The union of these lists is the
set of nodes which can be reached in a content-walk of
length 2. The top-q most frequent nodes among these
are sampled for the purposes of determining the next
node in the walk. We note that content hops are less
efficient to perform than structural hops, but the use of
inverted lists greatly speeds up the process.

3.2 Analysis An important point to note is that we
are essentially using Monte-carlo sampling of the paths
from different nodes. The use of such a sample can
result in some loss of accuracy, but the advantage is
that it is much more efficient than the use of an exact
computation of node probabilities. This is because
the exact computation of node probabilities can require
expensive matrix operations based on the structure of
the graph adjacency matrix. This is not very helpful
for a large network in which many such computations
need to be performed. The sampling approach is also
critical in being able to utilize the approach effectively
in a dynamic scenario in which repeated re-computation
of node probabilities is required. Therefore, an efficient
sampling approach such as the one discussed in the
paper is critical. In this section, we will study the
loss of accuracy which arises from the use of such
samples. The aim is to show that the use of Monte-Carlo
samples retains practically the same effectiveness as an
approach which can determine the hop probabilities
exactly. As mentioned earlier, the class which is visited
the maximum number of times during the entire random
walk process is reported as the relevant class. As in
the previous discussion, we ignore word nodes in the
analysis of hops, since they are only used as intermediate
nodes during the content hops. Therefore, all hops are
considered to be either structural hops from one node
in Nt to another node in Nt, or content hops from one
node in Nt to another node in Nt with the use of an
intermediate word node. The main focus is to show
that the ordering of different classes in terms of the
number of visits does not change significantly because
of the sampling process. For this purpose, we will use
the Hoeffding inequality. First, we will consider the case
of two classes. Then, we will generalize our results to
an arbitrary number of classes. Let us consider two
classes 1 and 2, for which the expected fraction of visits
for a particular test node are f1 and f2 respectively,
so that b = (f1 − f2) > 0. In this case, class 1 is a

more appropriate label for the test node as compared
to class 2, because it is the majority class. We further
note that the sum of f1 and f2 may not necessarily
be 1, because many of the intermediate nodes in the
hop may be unlabeled. We would like to determine
the probability that the Monte-Carlo sampling process
results in the undesirable outcome of the ordering of
the classes 1 and 2 being reversed during the random
sampling process. This directly provides us with the
classification error probability.

Lemma 3.1. Let us consider two classes with expected
visit probabilities of f1 and f2 respectively, such that
f1−f2 > 0. Then, the probability that the class which is
visited the most during the sampled random hop process
is reversed to class 2, is given by at most e−l·b2/2.

Proof. Let Xi be the random variable which represents
the fraction of nodes of class 1, which are visited during
the ith random walk, and let Yi be the random variable
which represents the fraction of nodes of class 2, which
are visited during the ith random walk. Then we
define the random variable defining the differential hop
fraction as Zi = Xi − Yi. It is clear that Zi is a
random variable which lies in the range [−1, 1], and has
an expected value of b. Then, we define the random
variable S as the sum of the different values of Zi over
the l different random walks. Therefore, we have:

(3.3) S =
l∑

i=1

Zi

Since E[Zi] = b, it follows that E[S] = l · b. In order
for the majority class to be class 2, we need S < 0.
Therefore, we would like to determine the probability
P (S < 0). For this purpose, we will make use of the
Hoeffding inequality, because S is expressed as a sum of
bounded random variables in the range [−1, 1]. By using
E[S] = l · b, we get:

P (S < 0) = P (S − E[S] < −l · b)

Since S is the sum of l independent random variables,
which lie in the range [−1, 1], we can use the Hoeffding
inequality to bound the probability of error, a proxy for
which is the expression P (< 0):

P (S < 0) = e−l·b2/2

The result above shows that the probability of
error because of sampling reduces exponentially with
the number of paths that are sampled. For example,
consider the case, when we sample 100 different paths,
and b = 0.1. In that case, the probability of error
is given by at most e−1000·0.01/2 = e−5 < 1%. This

suggests that the additional error of approach because
of the sampling process will be less than 1%. In general,
the exponential rate of error decrease with sample size
is critical in ensuring that the approach can be used
efficiently with Monte-carlo sampling. Next, we will
generalize the result to the case of k classes. First, we
need to define the concept of b-accuracy of a sampling
process in a case with k classes.

Definition 1. Let us consider the node classification
problem with a total of k classes. We define the
sampling process to be b-accurate, if none of the classes
whose expected visit probability is less than b of the class
with the largest expected visit probability turns out have
the largest sampled visit probability.

We note that the above definition is simply a
generalization of the case for two classes. The main
purpose of defining the concept of b-accurate is to ensure
that none of the classes which are too far off from the
optimum value are picked as a result of the sampling
process. We can directly generalize the results of
Lemma 3.1 in order to prove that the sampling process
is b-accurate.

Theorem 3.1. The probability that the sampling pro-
cess results in a b-accurate reported majority class is
given by at least 1− (k − 1) · e−l·b2/2.

Proof. The results of Lemma show that the probability
of pairwise error is at most e−l·b2/2 because of the
sampling process. Therefore, the probability of pairwise
error for any of the (at most) (k−1) other classes which
have expected visit probability at most b of the optimum
is given by at most (k− 1) · e−l·b2/2. The result follows.

Theorem 3.1 presents the theoretical analysis of the ac-
curacy of the proposed random walk-based approach.
It states that even with random walks, the proposed
classification method is able to report the correct ma-
jority class for a node with at least a certain probability.
This suggests that the proposed DYCOS framework is
a good solution to overcome the potential noise encoun-
tered during random walks.

4 Experimental Results

In this section, we validate the effectiveness and effi-
ciency of DYCOS with experiments on real data sets.
The effectiveness is measured by classification accuracy,
which is the proportion of correctly classified nodes as to
the total number of test nodes which are classified. The
efficiency is measured by the execution time of classifica-
tion. For this purpose, we report the wall-clock time. In
order to establish a comparative study, we compare the

performance of DYCOS to that of NetKit-SRL toolkit1,
which is an open-source network learning toolkit for sta-
tistical relational learning [11]. The results obtained
in a multi-class classification environment demonstrate
that DYCOS is able to improve the average accuracy
over NetKit-SRL by 7.18% to 17.44%, while reducing
the average runtime to only 14.60% to 18.95% of that
of NetKit-SRL. The specific setup of NetKit-SRL cho-
sen in our experiments will be described later. It is
worth mentioning that NetKit-SRL package is a generic
toolkit without particular optimization for our problem
definition.

In order to illustrate the efficiency of DYCOS in
a dynamic environment, the model update time in the
presence of incrementally arriving data is also reported.
This confirms that the underlying classification model
can be dynamically maintained in an efficient way. This
can be very important in the context of large scale
applications in which the change occurs continuously
over time.

4.1 Experiment Setup Two real data sets are used
in our experimental evaluation, which are CORA data
and DBLP data, as shown in Table 1.

Table 1: Data Set Description

Name Nodes Edges Classes Labeled Nodes

CORA 19,396 75,021 5 14,814

DBLP 806,635 4,414,135 5 18,999

In Table 1, the labeled node number is the number
of nodes whose class labels are known and the class
number is the number of distinct classes the nodes
belong to.

CORA data. The CORA graph is down-
loaded from http://www.cs.umass.edu/~mccallum/

code-data.html. This data set contains a set of re-
search papers and the citation relations among them.
There are 19,396 distinct papers and 75,021 citation re-
lations among them. Each node is a paper and each
edge is a citation relation. A total of 12,313 English
words are extracted from the titles of those papers to
associate each paper with keywords. The CORA data
set is well-suited for our experiments because the papers
are classified into a topic hierarchy tree with 73 leaves.
Each leaf represents a specific research area in computer
science. We reconfigure the hierarchy to achieve a more
coarse-grained classification. We extract 5 classes out
of the 74 leaves, and 14,814 of the papers belong to
these 5 classes. Since the CORA graph does not in-

1http://www.research.rutgers.edu/~sofmac/NetKit.html.

clude temporal information, we segment the data into
10 sub-graphs, representing 10 synthetic time periods.
The classification is performed dynamically when the
graph increasingly evolves from containing only the first
sub-graph to containing all sub-graphs.

DBLP data. The DBLP graph is down-
loaded from http://www.informatik.uni-trier.de/

~ley/db/ and updated until March 27, 2010. It con-
tains 806,635 distinct authors and 4,414,135 collabora-
tion edges among them. Each node is an author and
each edge represents a co-author relationship. A total
of 194 English words in the domain of computer science
are manually collected to associate authors with key-
word information. The number of occurrences of each
word is calculated based on the titles of publications as-
sociated with each author. We use 5 class labels, which
denote 5 computer science domains: computer archi-
tecture, data mining, artificial intelligence, networking
and security. We associate some of the authors with
ground-truth class labels using information provided by
ArnetMiner2, which offers a set of comprehensive search
and mining services for academic community. In total
we have collected class labels for 18,999 authors. We
segment the whole DBLP graph into 36 annual graphs
from year 1975 to year 2010. The classification is per-
formed dynamically as the graph evolves over time.

NetKit-SRL toolkit. The well-known NetKit-
SRL toolkit was used for comparative study. NetKit-
SRL, or NetKit for short, is a toolkit for learning from
and classifying networked data. It is open-source and
publicly available. It is aimed at estimating the class
membership probability of unlabeled nodes in a par-
tially labeled network [11]. NetKit contains three key
modules, local classifier, relational classifier and collec-
tive inferencing. For more details on NetKit, we refer
the readers to [11]. In our experiments, we use domain-
specific class-prior as the local classifier, network-only
multinomial Bayes classifier as the relational classifier
and relaxation labeling for collective inferencing.

Experiment parameters. Several parameter set-
tings were tested in order to examine DYCOS ’s per-
formance under various conditions. They are: 1) The
number of most discriminative words, denoted bym (see
Section 2). 2) The size constraint of the inverted list for
word i (see Section 2.1), denoted by a, i.e. |Pi| <= a.
This is required to control the extent to which each word
should be expanded to form 2-hop paths from the cur-
rent source node. Such a constraint is necessary to in-
crease the efficiency of the random-walk process. 3)
Number of top 2-hop paths, q (see Section 3.1). 4) The
structure parameter ps (see Section 3). 5) Number of

2http://www.arnetminer.org/.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

1 2 3 4 5 6 7 8 9 10

A
vg

. C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

Time Period

DYCOS
NetKit

(a) Avg. Classification Accuracy Comparison

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10

A
vg

. C
la

ss
if

ic
at

io
n

T
im

e
in

 S
ec

on
ds

Time Period

DYCOS
NetKit

(b) Avg. Classification Time Comparison

Figure 2: Comparative Study on CORA

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

1975-1989 1990-1999 2000-2010

A
vg

. C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

Time Period

DYCOS
NetKit

(a) Avg. Classification Accuracy Comparison

 0

 10

 20

 30

 40

 50

1975-1989 1990-1999 2000-2010

A
vg

. C
la

ss
if

ic
at

io
n

T
im

e
in

 S
ec

on
ds

Time Period

DYCOS
NetKit

(b) Avg. Classification Time Comparison

Figure 3: Comparative Study on DBLP

random walks for each source node, l (see Section 3.1).
6) Number of hops in each random walk, h (see Sec-
tion 3.1). All experiments are run using one core on an
Intel Xeon 2.5GHz and 32G RAM server with Fedora 8.

In the following sections, the classification perfor-
mance of DYCOS is first compared to that of NetKit.
Then, we examine how well DYCOS performs in a dy-
namic network environment. Finally, we demonstrate
the model sensitivity to two important parameters, the
number of most discriminative words, m, and the size
constraint of inverted lists for words, a.

4.2 Classification Performance The classification
performance is measured by both accuracy and effi-
ciency. The accuracy is the fraction of correctly clas-
sified nodes. The efficiency is defined by the wall-clock
execution time in seconds. The parameter setting for
DYCOS is: m = 5, a = 30, ps = 0.7, l = 3, and h = 10.
We will show later DYCOS is not significantly sensitive
to these parameters. The setting for NetKit is as afore-
mentioned. We utilize the ”-test” option in NetKit to

ensure a consistent set of testing samples, on which the
accuracy is computed, between NetKit and DYCOS.

4.2.1 Comparative Study on CORA Data Set
In this section, we compare the DYCOS and Netkit
algorithms on the CORA data set. Figure 2(a) shows
the average classification accuracy of both the DYCOS
and Netkit algorithms for each synthetic time period.
Clearly, the DYCOS classification model enables a
performance gain ranging from 9.75% (time period 1)
to 22.60% (time period 7). The average accuracy
increment induced by DYCOS is 17.44% on the CORA
data set.

The comparison of running time for each time
period is shown in Figure 2(b). As illustrated, DYCOS
is much more efficient in terms of running time. The
running time of DYCOS is only a portion of that of
NetKit, and it ranges from 12.45% (time period 10) to
16.70% (time period 7). The average running time of
DYCOS is 14.60% that of NetKit on the CORA data
set.

4.2.2 Comparative Study on DBLP Next, we
present the comparative results on DBLP data. In order
to establish a dynamic view, we divide the entire 36-
year course of time into three periods, 1975-1989, 1990-
1999 and 2000-2010. Figure 3(a) presents the average
accuracy of both DYCOS and Netkit, for each time
period. DYCOS achieves a performance gain ranging
from 1.75% (time period 2000-2010) to 13.73% (time
period 1975-1989). The average accuracy increment
induced by DYCOS is 7.18% on DBLP.

The comparison of classification running time for
each time period is shown in Figure 3(b). As shown,
DYCOS again decreases running time significantly. The
running time of DYCOS is only a portion of that of
NetKit. This time ranges from 11.30% (time period
2000-2010) to 21.30% (time period 1975-1989). The
average running time of DYCOS is 18.95% that of
NetKit on DBLP data.

4.3 Dynamic Update Efficiency In this section,
we investigate the efficiency of DYCOS in the presence
of dynamically arriving data. As aforementioned, DY-
COS handles temporally-evolving graphs with efficient
update mechanisms. Table 2 presents the average model
update time (in seconds) of DYCOS when new data
from the next synthetic time period arrives, on CORA
data. The average model update time over all 10 time
periods is 0.015 seconds.

Table 2: Avg. Dynamic Updating Time in Each Time
Period on CORA

Time Period 1 2 3 4 5

Update Time (Sec.) 0.019 0.013 0.015 0.013 0.023

Time Period 6 7 8 9 10

Update Time (Sec.) 0.015 0.014 0.014 0.013 0.011

 0.81

 0.82

 0.83

 0.84

 0.85

3 4 5 6

A
vg

. C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

Number of Most Discriminative Words, m

l=5, h=8
l=3, h=5
l=3, h=10

Figure 4: Avg. Classification Accuracy vs. m on CORA

Table 3 presents the average annual model update
time (in seconds) of DYCOS over various time periods,

1.00

2.00

3.00

4.00

5.00

3 4 5 6

A
vg

. C
la

ss
if

ic
at

io
n

T
im

e
in

 S
ec

s

Number of Most Discriminative Words, m

l=5, h=8
l=3, h=5
l=3, h=10

Figure 5: Avg. Classification Time vs. m on CORA

on DBLP data. The average annual model update time
over all 36 years is 0.38 seconds.

Table 3: Avg. Dynamic Updating Time in Each Time
Period on DBLP

Time Period 1975-1989 1990-1999 2000-2010

Update Time (Sec.) 0.03107 0.22671 1.00154

The results demonstrate the efficiency of maintain-
ing the DYCOS model under a dynamically-evolving
network environment. This is a unique advantage of
DYCOS in terms of its ability to handle dynamically
updated graphs.

4.4 Parameter Sensitivity The purpose of the pa-
rameter sensitivity study is to examine the sensitivity
of DYCOS to various parameters, and the nature of
their impact on performance. Due to limited space, we
demonstrate the sensitivity study on two particularly
important parameters, the number of most discrimina-
tive words, m, and the size constraint of inverted lists
for words, a.

4.4.1 Parameter Sensitivity on CORA For
CORA data set, three different scenarios are created
based on the values of the remaining parameters, which
are (i) l = 5, h = 8, (ii) l = 3, h = 5, and (iii) l = 3,
h = 10, with q set to 10 for all three. Figures 4 and 5
demonstrate the variation in classification performance
over different m in accuracy and running time respec-
tively. It is evident that there is no significant corre-
lation between m and the classification performance,
though the running time increases slightly with m. This
is expected because a higher value of m does not nec-
essarily imply better quality of results, since less dis-
criminative words might be included when m increases.

The accuracy and efficiency variations with the pa-

 0.81

 0.82

 0.83

 0.84

 0.85

5 10 15 20 25 30

A
vg

. C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

Maximum Number of Papers per Word, a

l=5, h=8
l=3, h=5
l=3, h=10

Figure 6: Avg. Classification Accuracy vs. a on CORA

1.00

2.00

3.00

4.00

5.00

5 10 15 20 25 30

A
vg

. C
la

ss
if

ic
at

io
n

T
im

e
in

 S
ec

s

Maximum Number of Papers per Word, a

l=5, h=8
l=3, h=5
l=3, h=10

Figure 7: Avg. Classification Time vs. a on CORA

rameter a are presented in Figures 6 and 7. The result
is reasonable, considering that while larger inverted lists
for words give opportunity for more 2-hop paths to be
considered, they might meanwhile include less relevant
2-hop paths.

The robustness of DYCOS is therefore illustrated
in that it does not heavily rely on parameter setting,
and more efficient choices can achieve equally effective
results.

 0.61

 0.62

 0.63

 0.64

 0.65

5 10 15 20

A
vg

. C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

Number of Most Discriminative Words, m

a=20, ps=0.7
a=30, ps=0.7
a=10, ps=0.5

Figure 8: Avg. Classification Accuracy vs. m on DBLP

5.0

10.0

15.0

20.0

25.0

5 10 15 20

A
vg

. C
la

ss
if

ic
at

io
n

T
im

e
in

 S
ec

s

Number of Most Discriminative Words, m

a=20, ps=0.7
a=30, ps=0.7
a=10, ps=0.5

Figure 9: Avg. Classification Time vs. m on DBLP

4.4.2 Parameter Sensitivity on DBLP For
DBLP data, Figures 8 and 9 demonstrate the sen-
sitivity to parameter m in terms of both accuracy
and running time, under three scenarios: (i) a = 20,
ps = 0.7, (ii)a = 30, ps = 0.7, and (iii)a = 10, ps = 0.5,
with q = 10 for all scenarios. Interestingly, we can
observe that, on DBLP data, classification accuracy
reduces when m increases. This is expected because
a higher value of m implies that less discriminative
words are included into computing 2-hop paths during
random walks. The sensitivity to a in Figures 10 and
11 shows similar trends in DBLP as in CORA.

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

5 10 15 20 25 30

A
vg

. C
la

ss
if

ic
at

io
n

A
cc

ur
ac

y

Maximum Number of Authors per Word, a

m=5, ps=0.7
m=10, ps=0.7
m=20, ps=0.5

Figure 10: Avg. Classification Accuracy vs. a on DBLP

5 Conclusions and Summary

In this paper, we presented an efficient, dynamic and
scalable method for node classification in networks
with both structure and content. The classification
of content-based networks is challenging, because some
parts of the network may be more suited to structural
classification, whereas others may be suited to content-
based classification. Furthermore, many networks are
dynamic, which requires us to maintain an incremental

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

5 10 15 20 25 30

A
vg

. C
la

ss
if

ic
at

io
n

T
im

e
in

 S
ec

s

Maximum Number of Authors per Word, a

m=5, ps=0.7
m=10, ps=0.7
m=20, ps=0.5

Figure 11: Avg. Classification Time vs. a on DBLP

model over time. Our results show that our algorithms
are scalable, and can be be applied to large and dynamic
networks. We show the advantages of using a combina-
tion of content and linkage structure, which can pro-
vide more robust classifications across different parts of
a diverse network. We present experimental results on
real data sets, and show that our algorithms are much
more effective and efficient than competing algorithms
in terms of both effectiveness and efficiency.

Acknowledgements

Research was sponsored by the Army Research Labo-
ratory and was accomplished under Cooperative Agree-
ment Number W911NF-09-2-0053. The views and con-
clusions contained in this document are those of the au-
thor and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright notice hereon.
We would also like to thank Xifeng Yan for his com-
ments and suggestions.

References

[1] C. C. Aggarwal, and H. Wang, Managing and Mining
Graph Data, Springer, (2010).

[2] C. C. Aggarwal, Social Network Data Analytics,
Springer, (2011).

[3] S. Bhagat, G. Cormode, and I. Rozenbaum, Applying
link-based classification to label blogs, WebKDD/SNA-
KDD, (2007), pp. 97–117.

[4] M. Bilgic and L. Getoor, Effective label acquisition for
collective classification, KDD Conference, (2008), pp.
43–51.

[5] S. Chakrabarti, B. Dom, and P. Indyk, Enhanced
hypertext categorization using hyperlinks, SIGMOD
Conference, (1998), pp. 307–318.

[6] V. R. de Carvalho and W. W. Cohen, On the
collective classification of email ”speech acts”, SIGIR
Conference, (2005), pp. 345–352.

[7] R. Duda, P. Hart, and D. Stork, Pattern Classification,
Wiley, (2000).

[8] G. Jeh and J. Widom, Scaling personalized web search,
WWW Conference, (2003), pp. 271–279.

[9] T. Joachims, Text Categorization with Support Vector
Machines: Learning with Many Relevant Features,
ECML Conference, (1998), pp. 137–142.

[10] Q. Lu and L. Getoor, Link-based classification, ICML
Conference, (2003), pp. 496–503.

[11] S. A. Macskassy, and F. Provost, Classification in
Networked Data: A Toolkit and a Univariate Case
Study, I Journal of Machine Learning Research, Vol.
8, (2007), pp. 935–983.

[12] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell,
Text classification from labeled and unlabeled docu-
ments using EM, Machine Learning, Vol. 39(2–3),
(2000), pp. 103–134.

[13] F. Sebastiani, Machine learning in automated text
categorization, ACM Computing Surveys, Vol. 34(1),
(2002), pp. 1–47.

[14] B. Taskar, P. Abbeel, and D. Koller, Discriminative
probabilistic models for relational data, UAI, (2002),
pp. 485–492.

[15] J. S. Vitter, Random sampling with a reservoir, ACM
Transactions on Mathematical Software, Vol. 11(1),
(1985), pp. 37–57.

[16] Y. Yang, An evaluation of statistical approaches to
text categorization, Information Retrieval, Vol. 1(1-2),
(1999), pp. 69–90.

[17] T. Zhang, A. Popescul, and B. Dom, Linear prediction
models with graph regularization for web-page catego-
rization, KDD Conference, (2006), pp. 821–826.

[18] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf, Learning with local and global consis-
tency, Advances in Neural Information Processing Sys-
tems, Vol. 16, (2004), pp. 321328.

[19] D. Zhou, J. Huang, and B. Schölkopf, Learning from
labeled and unlabeled data on a directed graph, ICML
Conference, (2005), pp. 1036–1043.

[20] Y. Zhou, H. Cheng, and J. X. Yu, Graph clustering
based on structural/attribute similarities, PVLDB,
Vol. 2(1), (2009), pp. 718–729.

[21] X. Zhu, Z. Ghahramani, and J. D. Lafferty, Semi-
supervised learning using gaussian fields and harmonic
functions ICML Conference, (2003), pp. 912–919.

