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Abstract—Customer lifetime value modeling and cross-
selling pattern mining are two important areas of data mining
applications in marketing sciences. In this paper, we propose
a novel approach that can address both of these problems
in a unified manner. We propose a variant of reinforcement
learning, enhanced with the notion of “action proxy”, which
is applicable to the cross-selling pattern discovery even in the
absence of actions. For action proxies, we consider the target
reward (changes) across product categories. The motivation is
to optimize the target values of immediate rewards to maximize
the expected overall long-term reward. Since the changes
are directly tied to the reward, unconstrained formulation
would result in unbounded behavior, leading us to constrain
the learned policy. The goal is to optimize the target values
while keeping their effects on the overall immediate rewards
constrained. Experiments on real world data not only verify
the effectiveness of our framework, but also provide qualitative
study of allocation behavior, with particular emphasis on
temporal cross-selling optimization.

Keywords-Lifetime Value; Cross-Sell; Markov Decision Pro-
cess; Reinforcement Learning; Business Optimization;

I. I NTRODUCTION

As contemporary economy becomes increasingly service
oriented, corporate revenues become dependent on the es-
tablishment and maintenance oflong-term customer rela-
tionships. It is a topic of interest in marketing sciences,
often referred to as customerlifetime value (LTV) modeling.
Customer LTV is defined as the present value of the long-
term profits attributed to the customer. A recent approach
in data mining to maximize LTV is based onReinforcement
Learning (RL) andMarkov Decision Process (MDP) [1], [2].
However, RL-based approach requires historical marketing
actions data, as a premise to learn the effects of the actions
on the rewards. A marketing action is a process that allows
an organization to concentrate its limited resources on the
greatest opportunities to achieve a competitive advantage
over time. Marketing actions take the form of various
marketing activities involving customers, spanning across
promotion advertisements, discount offers, campaigns, and
so forth. In many business scenarios, historical marketing
actions data may be infeasible to collect or extract. It is
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Figure 1. Cross-Selling Patterns Example

desirable to devise ways to still leverage the RL and MDP-
based approach in the absence of actions.

Previous works show the importance of another interesting
problem: cross-selling mining [3], [4], [5]. Products thatdo
not generate much profit by themselves can possibly be the
catalyst for the sales of others. As in Fig. 1, cosmetics
sales might lead to higher degree of customer loyalty,
which subsequently leads to increased sales of skin care
products and women’s apparel. Another case in point is
the movie recommendation system, where cultivating users’
initial interest in film series (e.g. “Harry Potter”) may spawn
repeated rentals of the sequels. Association rule mining
has been widely used to perform affinity analysis among
products to discover cross-selling [3], [4].

While the above two topics are gaining attention, combin-
ing them together to study customer behavior is rarely con-
sidered. RL-based LTV maximization tends to overlook tem-
poral cross-selling, because RL emphasizes on the optimal
choice of actions. Typical formulation of the cross-selling
problem usually involves only historical sales, not actions.
Meanwhile, cross-selling mining tends to overlook long-term
reward maximization, because the typical objective in cross-
selling mining is the frequency of pattern occurrence.

In this paper, we propose a variant of reinforcement
learning integrating LTV modeling and cross-selling mining
within a unified framework. Our motivation is twofold: 1)
utilize cross-selling effects among product categories tohelp
enterprise maximize their overall customer lifetime value;
2) extend standard RL framework to address the challenge



imposed by the lack of actions data. We introduce the
concept ofaction proxy to enhance RL to achieve both
goals. We propose the framework ofConstrainedAction
Proxy-Driven Reinforcement Learning (C-APRL), where
observable features related to rewards are used as action
proxies, to account for situations where historical actions
data are not available. In order to discover temporal cross-
selling, we further formulate action proxies using rewards
across product categories.

Contributions: 1) We address both customer LTV mod-
eling and temporal cross-selling mining in a unified manner.
2) We address the challenge of missing actions data via the
concept of action proxies. 3) We present empirical evaluation
on real business data from multiple domains.

II. PROBLEM FORMULATION AND OBSERVATION

This paper addresses an important business problem: how
do we effectively model customer LTV, which can lead to
a solution to optimizing cross-selling effects across product
categories? To achieve this goal, we design a system to help
marketers maximize the expected LTV of their customer
base, or long-term customer satisfaction, while optimizing
cross-selling effects among various product categories.

Challenges arise when historical marketing actions data
are absent, and a standard RL-based approach is inap-
plicable. We propose to modify the RL framework with
the notion of action proxy. More specifically, we design
a family of action proxies, calledcategorical action proxy
(CAP). CAPs are formulated with respect to target reward
values for a given set of categories. In the business problem
under consideration, CAPs are used to quantify cross-selling
effects across product categories. CAPs are substitutes for
missing marketing actions, and can be learned and optimized
by our framework. For each customer, a learned policy is
generated to determine a sequence of product categories
designated for this customer. Such sequence represents an
optimized temporal cross-selling pattern across categories,
providing insights to decision makers.

III. M ARKOV DECISION PROCESS

AND L IFETIME VALUE MODELING

We briefly review MDP and RL-related concepts and the
motivation of using them for customer LTV modeling.

A. Markov Decision Process

MDP is a Markov system with discounted rewards. Key
components of a standard MDP include:(1) the state space,
S = {s1, s2, . . . , sn}, and an initial state distributionφ :
S → R; (2) the action spaceA = {a1, a2, . . . , am}, with
a transition probability functionτ : S × A × S → [0, 1],
such that∀s ∈ S, ∀a ∈ A, Σs′∈Sτ(s

′|s, a) = 1, where
τ(s′|s, a) is the conditional probability of transiting to state
s′ from states as a result of actiona; and (3) the expected
immediate reward functionR : S × A → R, whereR(s, a)

is the expected immediate reward of taking actiona at state
s. For the ease of notation,τ(s, a) also denotes a random
variable that satisfiesPr[τ(s, a) = s′] = τ(s′|s, a).

Given an MDP, a policyπ : S → A determines the action
to take in any states. A policy π gives rise to an infinite
sequence of quadruples,〈st, at, τ(st, at), R(st, at)〉, where
st is the state at timet, at is the action inst, τ(st, at) is
the next state andrt = R(st, at) is the expected immediate
reward as a result of such transition. The initial states0
is drawn according toφ. Once an MDP is combined with a
policy, the action for each state is stochastically determined.

The core task in an MDP is to find an optimal policyπ∗

that maximizes some cumulative function of the probabilis-
tic rewards, typically the expected discounted sum over a
potentially infinite horizon,

π∗ = argmaxπ|at=π(st)

( ∞∑

t=0

γtR(st, at)
)
. (1)

It is proven that for any MDP, there exists an optimal policy
π∗ that satisfies Bellman’s fix-point equation:

Vπ∗(s, a) = max
a′∈A

E[R(s, a) + γVπ∗(τ(s, a), a′)]. (2)

whereVπ∗(s, a) is the expected long-term cumulative reward
at states with a as the action, if policyπ∗ is followed at
every step in the future.γ is a discount factor within[0, 1].

A constrained MDP is an MDP where the policies under
consideration must belong to a set of permissible policies,Π.
In a standard constrained MDP [6], a policy is determined
subject to a set of bounds on cumulative discounted “costs”.

1) Reinforcement Learning: When the state transition
probability function,τ(s, a) and the reward function,R(s, a)
are known, value iteration is a standard method to compute
the optimal policy. It follows Bellman’s equation, which
expresses the value at a certain time point in terms of
the payoff from some initial choices and the value of the
remaining decision problem that results from those initial
choices. Nonetheless, difficulties arise when the exact forms
of τ(s, a) and R(s, a) are unknown. This turns the MDP
solving into a reinforcement learning problem. A variant of
RL is Q-learning [7]. Q-learning uses the idea ofexperience-
based updating. Value functions are updated according to
the empirical quadruples,〈st, at, τ(st, at), R(st, at)〉 come
across in the data. LetQk(s, a) denote theQ-value function
for states if action a is taken during thekth iteration.

Q0(st, at) = R(st, at),

Qk+1(st, at) = (1− αk)Qk(st, at)

+ αk(R(st, at) + γmax
at+1

Qk(st+1, at+1)),

π∗(st) = argmaxat
Q∞(st, at), (3)

whereαk is the learning ratio at iterationk. The power of
RL lies in its ability to solve the MDP without explicitly
requiring the MDP model of the environment.
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Figure 2. Customer State Transition Example

B. MDP in Customer LTV Modeling

Maximizing the expected customer LTV can be formu-
lated as maximizing the discounted cumulative reward in an
MDP. A state in MDP is extracted from a set of purchase
features of a customer, such as demographics, purchase
history, and so on. When using MDP, we focus on the
purchase features. Customer states, such as “Repeater”,
“Loyal Customer” and “Valuable Customer” (Fig. 2), can
further be extracted from their purchase features. Such states
measure how valuable or profitable a customer is to the
enterprise in the long run, and they can be translated to
a set of conditions on the purchase features. An action in
MDP corresponds to a marketing action, such as promotion
campaigns, mailing catalogs, online advertisements, and so
forth. A marketing action takes a customer from one state
to another. In our problem formulation, we extract action
proxies from historical rewards to approximate marketing
actions. Computing LTV directly from data only reflects
the value attained by the historical policy. MDP is able
to attain the optimal LTV, through the optimized policy.
Fig. 2 shows that MDP estimates the LTV along the optimal
path (black arrow from “potentially valuable” to “valuable
customer”), as opposed to the historical path (white arrow
from “potentially valuable” to “defector”).

IV. M ETHODOLOGY

We propose a MDP-based framework,Constrained Action
Proxy-driven Reinforcement Learning (C-APRL), to address
LTV maximization in the absence of action data, with an
emphasis on cross-sell discovery. The input of C-APRL
is the historical transaction data without explicit marketing
actions. The output of C-APRL is an optimized policy that
gives rise to sequences of action proxies that maximize
overall expected long-term rewards over all customers.

A. Action Proxies and Cross-Selling

In some business scenarios, marketing actions, such as
mailings and campaigns, are difficult to acquire. Such ab-
sence obstructs the statistical learning of the relationship
between customer LTV and marketing actions. In this paper,
we propose action proxies, a set of observable features as
substitutes for the missing actions. In order to discover
temporal cross-selling relations across product categories,
we employ the notion of categorical action proxies (CAPs).

One instantiation of CAPs is the changes of purchase
amounts in various product categories. Such changes reflect
the change of attitude of a customer towards a specific
product type. A positive change shows an increase of interest
from the customer, and the enterprise might want to invest
more in promoting related products; whereas a negative
change probably implies a decrease of interest. The learned
policy contains rich information on how various categories
interact over time, providing valuable cross-selling insight
for marketing decision makers.

A policy, in the context of CAPs, is interpreted as:
π : S → A = {~δ}, where ~δ = (δ(1), . . . , δ(C))T is
the purchase amount change vector of lengthC with C as
the number of categories. Letst denote the customer state
vector at timet (composed of a set of features).π∗(st) =
at = (δt(1), . . . , δt(C))T , whereδt(c), c ∈ {1, . . . , C} is the
purchase amount change for categoryc from time interval
(t− 1, t) to (t, t+ 1).

B. Constrained Reinforcement Learning

The CAP formulation is continuous and related to the im-
mediate rewards, thus straightforward learning would gener-
ate a policy that allocates infinite values to the action proxies
(unbounded behavior). It is critical to impose constraintson
the learned policy. The constrained MDP enforces the policy
under consideration to belong to a set of permissible policies,
which is determined with respect to a set of constraints. Our
goal of constraints is twofold: 1) the assigned action proxies
are comparable to what was observed empirically; 2) the
assignment is subject to various business and economical
limits, such as financial and man-hour budgets.

A family of constrained batch-mode RL methods have
been proposed in [2]. Amongst them is theconstrained
advantage updating algorithm, a constrained version of the
algorithm by Baird [8], which extends standard Q-learning
to variable time intervals and continuous time-stamp sce-
narios. Advantage updating learns the relative advantage of
competing actions in any given state, thus avoiding explicit
estimate of theQ-value function. The underlying principle
of advantage updating focuses on the notion of “advantage”
of action at, in comparison to the optimal actiona∗

t . Let
A(st, at) denote such advantage, we can derive:

A(st, at) =
1

∆t
(R(st, at) + γ∆tV ∗(st+1)− V ∗(st)), (4)

whereV ∗(st) = maxa′t Q
∗(st, a′t) andQ∗(st, a′t) is the Q-

value of an optimal policy.∆t denotes the time interval from
st to st+1. From Eq. (4) we can further derive:

A(st, at) =
1

∆t
(Q∗(st, at)−max

a′t
Q∗(st, a′

t)). (5)

Advantage updating is different from Q-learning in two
aspects: 1) it normalizes the Q-value with respect to time
interval; 2) it normalizes the Q-value with respect to state
dependency and focuses on relative advantage of actions. For
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Figure 3. Overall Implementation of C-APRL Framework

marketing data where time intervals are naturally variable,
this is a desirable property. Previous work [2] has ob-
served that for the problem under study, advantage updating
outperforms Q-learning empirically (also confirmed by our
own experience). Therefore we adopt the batch advantage
updating as the reinforcement learning method in this work.

C. Framework Implementation

To account for a state space with a lot of features,function
approximation [1], [2] is used in the batch learning. An im-
plementation coupling segmented regression and constrained
optimization is adopted. Fig. 3 shows the overall framework.
The input data are a set of time-stamped transaction records.
Each record is a snap shot of the state of a customer
at a time point. The data are grouped into a series of
episodes. Each episode corresponds to one customer, and
contains all the transaction records of this customer. In each
iteration, a segmented linear regression model is applied on
all the episodes, the output of which consists of a set of
segments, each with a linear regression model. Constrained
optimization is then applied on all the segments.

Segmented Linear Regression.At iteration k of advan-
tage updating, we perform segmented linear regression over
all the data episodes. Data records are first segmented based
on their features, with a linear regression model in each
segment. Each segment is defined by a conjunctive condition
on the features and a regression equation. In each segment,
the linear regression is conducted on the advantage value,
Ak, which is estimated in terms of action proxies. Fig. 4
exemplifies this with a simple case, where a tree structure
is used to segment the records. The root groups the records
according to the profit of sportswear, the results of which
will be further classified using criteria on other features.
The leaf nodes are the final segments, each associated with a
regression model, with the advantage value as the regressand
and action proxies as the regressors.

Ak(st) = A0
k(st) + ~θS · at, st ∈ S. (6)

Eq. (6) is the linear regression for segmentS, where st
belongs toS andA0

k(st) is a constant. Eq. (6) yields a set
of coefficients for the action proxies, denoted by vector~θS.

Constrained Linear Programming Optimization. At
iteration k of advantage updating, once a linear relation
between the advantage and the action proxies is established,

DEFGHI FG JKFEIJLMNE HO IPM KNJI Q RFOIP

SFINT KEFGHI HO IPM KNJI U RFOIPJDEFGHI FG VMLMTEW HO IPM KNJI U RFOIPJ

XYZ[\]Q^_`abMOcJ dMNE
ef_QagHIhPMO dNEMi

XYZ[\]jU_kalMLMTEW
em_naoTMhIEFOHhJi

p] q Uk_mg r q Uk_mg

sss sss sss sss

t sss

uvwxvyz { uvwxvyz |

Figure 4. Segmented Linear Regression Example

we use constrained linear programming optimization to
choose the optimal action proxies for each segment. Our
goal is to maximize the aggregated advantage over the entire
population. According to Eq. (6), we need to maximize

max{
∑

S

|S|~θS · at}, (7)

where|S| is the cardinality of segmentS. Two types of con-
straints are applied on the optimization:1) It is imperative
to ensure the action proxies produced by the learned policy
adhere to what was observed empirically in the past. We
propose the usage of empirical bounds, expressed as

Π =
{
π
∣∣∣BL ≤ Eφ[Cst × at] ≤ BU

}
,

(8)

whereCst is a C × C diagonal matrix withCst(c, c) as the
unit cost incurred by action proxyc, c ∈ {1, . . . , C} in state
st. BL(c) and BU (c) are the lower and upper for action
proxy c. For all segments, we constrain the policy as:

BL
S(c) ≤

∑
S

ãS(c)|S|∑
S
|S| ≤ BU

S (c), c = {1, . . . , C}, (9)

where ãS is the assigned action vector of the optimization
for all C action proxies in segmentS. The assignment is
passed on to all records inS. BL

S(c) and BU
S (c) are the

empirical lower and upper bounds for action proxyc over
the state spaceS, constraining the range of allocation over
the population. One way to compute such bounds is to
use empirical mean minus and plus the empirical standard
deviation, as in Eq. (10):

µS(c)− σS(c) ≤
∑

S
ãS(c)|S|∑
S
|S| ≤ µS(c) + σS(c). (10)

2) In reality, promotion is conducted subject to limited
resources and budgets, which imposes a second type of con-
straints. We especially consider the loyalty group constraints.
Each customer belongs to a loyalty group, which reflects
how “loyal” this customer is to the enterprise. Each segment
is associated with a loyalty group, i.e. all customers in this
segment belong to the same group. Each loyalty groupg has
a group budgetB(g), which limits the the amount of actions
assigned to this group.

0 ≤
∑

S|G(S)=g

ãS · CS =
∑

S|G(S)=g

∑

c

ãS(c)CS(c) ≤ B(g),

(11)



Data: Historical dataD = {〈si,j , ai,j , Ri,j , ti,j〉}, i =
1, . . . , N, j = 1, . . . , li grouped intoN episodes
(li in length each), iteration numberK

Result: Optimal policyπ∗
K

1 Initialize D0 = {〈(si,j , ai,j),
Ri,j

∆ti,j
〉} for all states;

2 Initialize A0 = { Ri,j

∆ti,j
} for all states;

3 for k = 1 to K do
4 Segmented Regression:apply segmented

regression uponDk to obtain a set of segments
{S1, . . . , SM}, whereSi corresponds to a
regression model expressing the relations
betweenAk(i, j) and feature vector(si,j , ai,j);

5 Constrained Optimization: for each segment,
assign the best action proxies via constrained
optimization to maximize Eq. (7) s.t. Eq. (9) and
Eq. (11); use those assigned action proxies to
update policyπ∗

k;
6 Advantage update:updateAk usingπ∗

k;

7 return π∗
K ;

Algorithm 1: C-APRL Framework

where the loyalty group of segmentS is g andCS(c) is the
unit cost of taking actionc for segmentS. Eq. (11) states
that the cost of promotion over all segments associated with
a certain group should not exceed a budget specific to this
group. Alg. 1 describes the overall C-APRL framework.

V. L IFT ADVANTAGE EVALUATION

A challenge for any data-driven business optimization
methodology is to effectively evaluate the performance. Such
evaluation is typically required to be done without real
deployment and using only historical data. It is difficult
since historical data only behave according to the observed
policy. Importance sampling-basedbias correction [9] is a
viable method to overcome such difficulty, and has been
used in past works [1], [2]. We introduce bias correction-
basedlift advantage evaluation, an effective way to measure
the expected cumulative reward of a learned policy when
sampling the data with respect to the observed policy.
Let π̃ be the learned policy by the C-APRL framework,
while let π0 be the observed policy. Let̂Rπ0

(π̃) be the
expected cumulative reward of̃π over all possible states
when sampled with respect toπ0 and state distributionφ. It
is formulated as:

R̂π0
(π̃) = E

[ Prπ̃[at|st]
Prπ0

[at|st]
R̂π0

(st, at)
]

(12)

= E
[ Prπ̃[at|st]
Prπ0

[at|st]
(
Σi=f

i=0γ
iR(st+i, at+i)

)]
,

which measures the expected cumulative reward achieved
by π̃, estimated usingπ0 as the sampling policy.̂Rπ0

(st, at)

is the observed discounted cumulative reward, withf as
the number of time stamps looked ahead. As shown, lift
evaluation employs bias correction, in whicĥRπ0

(st, at)
is multiplied by the ratio between the probabilities of the
action proxy vectors by the respective policies.Prπ0

[at|st]
is the conditional probability of observingat at st according
to π0, and Prπ̃[at|st] is that according toπ̃. Assuming
independence among action proxies we have:

Prπ̃[at|st]
Prπ0

[at|st]
=

∏

c

Prπ̃[at(c)|st]
Prπ0

[at(c)|st]
, c = {1, . . . , C}, (13)

which is thebias ratio in the bias correction. Due to its wide
usage in finance and marketing [10], where large monetary
values exist pervasively, we propose to adoptlog-normal
distribution (lnN ) to model action proxy allocations. We
consider the action proxy distribution within each regression
segment. Each record is associated with an observed action
proxy vectorat (from π0) and an assigned vectorãt (from
π̃). Log-normal distribution is assumed forat(c) and ãt(c)
within any segmentS. Pr[at|st] = Pr[at|S, st ∈ S] holds for
both π̃ andπ0. Based on thelnN PDF

P (x) =
1

x
√
2πσ2

exp{− (lnx− µ)2

2σ2
},

whereµ andσ are themean and standard deviation of the
variable’s natural logarithm. If we assumeπ̃ ∼ lnN (µ̃, σ̃2)
andπ0 ∼ lnN (µ0, σ

2
0), we can derive

Prπ̃[at(c)|st]
Prπ0

[at(c)|st]
=

1

at(c)
√
2πσ̃2

exp{− (ln at(c)−µ̃)2

2σ̃2 }
1

at(c)
√

2πσ2
0

exp{− (ln at(c)−µ0)2

2σ2
0

}

=
σ0

σ̃
exp{ (ln at(c)− µ0)

2

2σ2
0

− (ln at(c)− µ̃)2

2σ̃2
},

where both policies’ mean and standard deviation can be
estimated from the observed action proxy vectors embedded
in the data,{at}, as well as the allocated action proxy
vectors,{ãt}. Therefore by using log-normal distribution,
we are able to estimate the expected lift advantage of the
learned policy according to Eq. (12).

VI. EXPERIMENTS

Experiments are done on real-world data of multiple
domains, ranging from retail to recommendation systems.
C-APRL is shown to produce policies that can enhance
the long-term rewards. Coin-OR linear programming (Clp)1

toolkit is used as the optimization solver.

A. Data Sets

Two real-world data sets are used. Each is processed into
a series of time-stamped records, half for learning and half
for testing, i.e. lift evaluation. Each record contains a set of
features, including the action proxy fields and the immediate

1https://projects.coin-or.org/Clp



Table I
CATEGORICAL ACTION PROXIESDESCRIPTION ONSaks AND MovieLens

Saks MovieLens
ID Description LB ($K) UB ($K) ID Description LB UB
1 Women’s clothing, bridal apparel, etc. -0.07 0.18 1 Action, crime, war, western, etc. -13.40 60.98
2 Jeans, denim, sportswear, etc. -0.04 0.14 2 Adventure, fantasy, thriller, etc. -10.17 46.84
3 Loungewear, kids’ clothing, etc. -0.05 0.14 3 Animation, children’s, etc. -2.38 11.35
4 Men’s furnishing & accessories, etc. -0.04 0.09 4 Comedy, musical, romance, etc. -12.07 54.91
5 Specialty shops, etc. -0.04 0.06 5 Documentary, etc. -0.21 0.90
6 Footwear, etc. -0.17 0.35 6 Drama, etc. -8.79 38.27
7 Catalog goods, etc. -0.01 0.01
8 Fragrance, body treatments, etc. -0.02 0.04
9 Accessories, jewelry, etc. -0.14 0.19
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Figure 5. Iterative Lift Evaluation on C-APRL and Observed Policies

reward field. Table I shows the semantics of the categorical
action proxies (CAPs), their empirical lower bound (“LB”)
and upper bound (“UB”) (Eq. (10)).

Saks Fifth Avenue Data. The Saks data are the sales
data provided by Saks Fifth Avenue. A sample of 5,000
customers is used, and a sequence of 68 states is generated
for each of them, corresponding to 68 marketing campaigns
in 2002, amounting to 340,000 data records. Each record
represents a time-stamped historical transaction. CAPs are
the purchase changes of 9 categories (Table I), where “cat-
alog goods” are those purchased from the catalogs.

MovieLens Data. The MovieLens data collected from
MovieLens2 contain 1,000,209 anonymous ratings (each is
an integer in[1, 5]) of approximately 3,900 movies made by
6,040 MovieLens users. We segment the data into 15 time
windows for each user. CAPs are the ratings of 6 movie
categories (Table I) in the current time window and the
immediate reward is the total rating in the next, since we
consider the customer’s overall satisfaction as an indicator
of this customer’s potential value to the rental company.

B. Lift Evaluation and Comparison

In order to establish comparison, we compare C-APRL
to the observed policy and a baseline policy. The observed
policy is that embedded in the data without optimization. A
non-iterative baseline does not apply reinforcement learning
(“Non-RL Baseline”) and finishes after one iteration.

2http://www.movielens.org/
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Figure 6. Lift Advantage vs.f on C-APRL and Observed Policies

1) Learned vs. Observed: Lift evaluation illustrates the
advantage of C-APRL policy compared to the observed
policy, using the estimated average cumulated reward (EAC-
reward) over a specified number (f ) of time stamps into
the future. Fig. 5 plots how the EAC-rewards of the two
policies change with the iteration forf = 2. For C-APRL, a
typical run starts with a policy that is relatively uninformed,
which does not show apparent advantage over the observed.
In later iterations, C-APRL framework achieves significant
advantage via iterative re-modeling and re-optimization.The
learning curves of the C-APRL policy exhibit local optima,
and tend to fluctuate through the iterations. It shows that
C-APRL is able to learn from previous errors and improve
the performance in response; once the performance starts
to deteriorate due to accumulated errors, this cycle repeats,
which leads to the presence of local optima. It indicates the
trade-off between the benefits of iterative improvement, and
the errors cumulated due to many applications of regres-
sion. The results are nonetheless encouraging. C-APRL can
increase the long-term rewards for both data sets with an
appropriate stopping rule.

Fig. 6 shows the comparison from another perspective,
i.e. how the EAC-rewards change overf . In most cases,
the EAC-rewards decrease asf increases. This is because
the EAC-reward for each record, is divided by a factor that
measures the overall cumulated discount from timet to t+f .
A larger value off results in a larger denominator. The
apparent lift advantage over the observed policy validates
the effectiveness of C-APRL.



Table II
MOST FREQUENTACTION SEQUENCES ONSaks AND MovieLens

Saks MovieLens
C-APRL, f = 2 Observed C-APRL, f = 2 Observed

kAction Sequence kAction Sequence kAction Sequence kAction Sequence
1catalog→jewelry→women’s1men’s furnish→footwear→women’s1war→crime→drama 1comedy→romance→comedy
2specialty→catalog→jeans 2specialty→jewelry→footwear 2crime→action→romance 2drama→drama→drama
3jeans→jewelry→jeans 3footwear→catalog→footwear 3western→drama→adventure3action→crime→adventure
4specialty→catalog→catalog4specialty→men’s furnish→specialty4action→crime→adventure 4action→comedy→romance
5kids’→catalog→jewelry 5jeans→catalog→catalog 5adventure→western→crime 5action→crime→romance

Table III
EXAMPLE MODELING SEGMENTS ONSaks AND MovieLens

Saks MovieLens
Segment Definition Action Allocation Segment Definition Action Allocation
If {profit total < 86.56, footwear: 12.96 If {2 ≤ rating total < 176 comedy: 58.39
profit jewelry < 317.50, fragrance: 75.83 rating fantasy≥ 1,
profit men furnish≥ 3.00, etc.} rating drama< 8, etc.}
Then {reward - 146.45 = Then {reward + 0.1 =
4.66 ∗ jeans + 9.99∗ footwear} 0.08 ∗ action + 0.05∗ comedy}
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Figure 7. Lift Advantage vs.f on C-APRL and Baseline Policies

2) Iterative Learning vs. Non-iterative Baseline: To ver-
ify that the advantage by C-APRL is indeed caused by
iterative modeling, a non-RL baseline method is used for
comparison. The baseline completes only one iteration of
C-APRL without iterative improvement, but the advantages
are initialized as empirical LTVs (cumulative discounted
rewards from the current time till the end), rather than just
immediate rewards. The effect of iterative improvement is
shown in Fig. 7. It is evident that the lift advantage by C-
APRL over the observed policy, is much larger than that by
the baseline. Apparently direct modeling without iterative
learning does not lead to any policy advantage.

C. Sequential Pattern Recognition

A policy gives rise to a sequence of actions. We study the
semantics of the policies via examining the most frequent
action sequences. An action sequence is built from a set
of f + 1 records, each associated with a representative
action proxy (RAP). Each action proxy is chosen to be the
representative with a probability proportional to its observed
value in that record, i.e.Pr[RAP(st) = c] ∼ at(c). All
f + 1 RAPs form an action sequence. Thek most frequent

action sequences are estimated after a number of records are
sampled from the test data. Each sampled record and thef

number of records following it are used to build a sequence.
For the observed policy, records are sampled randomly; for
the C-APRL policy, records are sampled stochastically by
their bias ratios. Table II shows the top-5 most frequent
action sequences. Interesting temporal cross-sell effects are
observed. For example, C-APRL onSaks favors sequences
such as: catalog goods, followed by jewelry/accessories and
followed by women’s clothing (No. 1); while onMovieLens
it favors sequences such as: western, followed by drama and
then by adventure (No. 3).

D. Case Study on Modeling Segments

We also inspect concrete examples of regression seg-
ments. For example, the left column of Table III shows
the 16th segment taken from the3rd iteration of C-APRL
on Saks (f = 2, λ = 0.6). It contains 8,573 records,
around 5% of the entire test population. The segment
definition consists of constraints on the features and the
assigned coefficients on action proxies. The definition can
be interpreted as: “if within the short past, the total profit
is less than $86.56K, the profit of accessories/jewelry is
below $317.5K, and that of men’s furnishing/accessories
is above $3K, then jeans/sportswear and footwear would
potentially have high impacts on the long-term customer
rewards”. A cross-sell effect can thus be indirectly identified.
The “Action Allocation” column denotes the assigned values
in this segment by constrained optimization. As indicated,
the optimized allocation favors footwear and fragrance/body
treatment, which further attributes the lift advantage to
enhanced consideration of temporal cross-selling.



VII. R ELATED WORKS

Two directions have emerged in modeling customer be-
haviors, customer lifetime value modeling [2], [1], [11], [12],
[13], [14] and cross-sell mining [4], [15]. Typical examples
in the first direction include RFM model [13], probability
model [14], and MDP model [2], [1]. The second direction
focuses on discovering cross-sell effects. An association
rule-based objective function is proposed in [4] to measure
the cross-sell utility of products and is further used to select
products for promotion. Our work is motivated to combine
those two into a unified framework.

Our framework couples MDP with RL to address a
business optimization problem. MDP has been studied as
the framework for autonomous learning in both humans
and robotics [16]. However, applying MDP to business
optimization has been under-explored. Meanwhile, various
RL techniques were proposed [7], [17], [18]. A variant of
RL is Q-learning [7]. Q-learning uses the idea of experience-
based updating. It can be done either online or in batch [17],
[18]. Batch RL reduces the amount of data needed by
leveraging available computation and memory [18]. In this
work, batch advantage updating [2] is adopted instead, given
its advantage in business optimization.

The problem addressed in this work is integrating data
modeling into the process of decision making, which has
been studied extensively. Notable examples include cost
sensitive learning [19] and economic learning [20]. The
cost structure used in those works, is however simple and
straightforward. In real world, complex constraints existto
restrict permissible decisions. It is essential to extend cost
minimization to constrained cost optimization, which is one
of the goals of this paper.

VIII. C ONCLUSIONS

In this paper, we address a general problem in customer
LTV modeling, and propose a solution using a novel variant
of RL supported by “action proxy”. We present a practical
application of this general idea, namely, the problem of
temporal cross-sell optimization. Experiments on real world
data show that the enhanced performance is due to both the
iterative re-optimization and the consideration of temporal
cross-selling effects. Our future works include:1) explore
other alternatives of formulating action proxies;2) incorpo-
rate more types of business constraints;3) make the system
less parameter-laden for future deployment.
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