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Abstract—Customer lifetime value modeling and cross- Mears Business
selling pattern mining are two important areas of data mining [C"s"‘e““ }\ [ Apparel }{ Attire ]
applications in marketing sciences. In this paper, we propse J \\
a novel_ _approach that can address bo_th of the_se problems Esm..cm]( E Kids j {me]
in a unified manner. We propose a variant of reinforcement Products \ ey

learning, enhanced with the notion of “action proxy”, which \ (
is applicable to the cross-selling pattern discovery evemithe EAJM"’-' ] ‘{‘X“nj \Eswmw,]
absence of actions. For action proxies, we consider the taeg coeone e

reward (changes) across product categories. The motivatiois
to optimize the target values of immediate rewards to maxinie
the expected overall long-term reward. Since the changes
are directly tied to the reward, unconstrained formulation
would result in unbounded behavior, leading us to constrain
the learned policy. The goal is to optimize the target values desirable to devise ways to still leverage the RL and MDP-
while keeping their effects on the overall immediate reward based approach in the absence of actions.

constrained. Experiments on real world data not only verify Previous works show the importance of another interesting
the effectiveness of our framework, but also provide qualitive

study of allocation behavior, with particular emphasis on problem: cross-selling mining [3], [4], [S]. Products tru

Figure 1. Cross-Selling Patterns Example

temporal cross-selling optimization. not generate much profit by themselves can possibly be the
Keywords-Lifetime Value; Cross-Sell; Markov Decision Pro- catalyst _for the sales c_)f others. As in Fig. 1, cosmetics
cess; Reinforcement Learning; Business Optimization; sales might lead to higher degree of customer loyalty,

which subsequently leads to increased sales of skin care
products and women’s apparel. Another case in point is
the movie recommendation system, where cultivating users’
As contemporary economy becomes increasingly servic#itial interest in film series (e.g. “Harry Potter”) may spa
oriented, corporate revenues become dependent on the égpeated rentals of the sequels. Association rule mining
tablishment and maintenance hfng-term customer rela- has been widely used to perform affinity analysis among
tionships. It is a topic of interest in marketing sciences,products to discover cross-selling [3], [4].
often referred to as customigfetime value (LTV) modeling. While the above two topics are gaining attention, combin-
Customer LTV is defined as the present value of the longing them together to study customer behavior is rarely con-
term profits attributed to the customer. A recent approaclsidered. RL-based LTV maximization tends to overlook tem-
in data mining to maximize LTV is based ®einforcement  poral cross-selling, because RL emphasizes on the optimal
Learning (RL) andMarkov Decision Process (MDP) [1],[2].  choice of actions. Typical formulation of the cross-selin
However, RL-based approach requires historical marketingroblem usually involves only historical sales, not acsion
actions data, as a premise to learn the effects of the actiondleanwhile, cross-selling mining tends to overlook longxte
on the rewards. A marketing action is a process that allowseward maximization, because the typical objective in sros
an organization to concentrate its limited resources on theelling mining is the frequency of pattern occurrence.
greatest opportunities to achieve a competitive advantage In this paper, we propose a variant of reinforcement
over time. Marketing actions take the form of various learning integrating LTV modeling and cross-selling manin
marketing activities involving customers, spanning asros within a unified framework. Our motivation is twofold: 1)
promotion advertisements, discount offers, campaignd, anutilize cross-selling effects among product categoridseip
so forth. In many business scenarios, historical marketingnterprise maximize their overall customer lifetime value
actions data may be infeasible to collect or extract. It is2) extend standard RL framework to address the challenge

I. INTRODUCTION



imposed by the lack of actions data. We introduce thds the expected immediate reward of taking actioat state
concept ofaction proxy to enhance RL to achieve both s. For the ease of notatiomn(s,a) also denotes a random
goals. We propose the framework @onstrainedAction  variable that satisfieBr[7(s, a) = s'] = 7(¢'|s, a).
Proxy-Driven Reinforcement Learning (C-APRL), where Given an MDP, a policyr : S — A determines the action
observable features related to rewards are used as actitm take in any state. A policy 7 gives rise to an infinite
proxies, to account for situations where historical action sequence of quadruple&, a;, 7(s¢, a:), R(s¢, ar)), where
data are not available. In order to discover temporal crosss; is the state at time, a, is the action ins;, 7(s¢, a:) is
selling, we further formulate action proxies using rewardsthe next state ang, = R(s, a;) is the expected immediate
across product categories. reward as a result of such transition. The initial stage

Contributions: 1) We address both customer LTV mod- is drawn according t@. Once an MDP is combined with a
eling and temporal cross-selling mining in a unified mannerpolicy, the action for each state is stochastically detareui
2) We address the challenge of missing actions data via the The core task in an MDP is to find an optimal poligy
concept of action proxies. 3) We present empirical evabmati that maximizes some cumulative function of the probabilis-
on real business data from multiple domains. tic rewards, typically the expected discounted sum over a

potentially infinite horizon,
Il. PROBLEM FORMULATION AND OBSERVATION -

This paper addresses an important business problem: how T = argmax, |, _(s,) ( Z/th(st’ at)). (1)

do we effectively model customer LTV, which can lead to t=0

a solution to optimizing cross-selling effects across pmd ¢ js proven that for any MDP, there exists an optimal policy
categories? To achieve this goal, we design a system to help: inat satisfies Bellman’s fix-point equation:
marketers maximize the expected LTV of their customer

base, or long-term customer satisfaction, while optingzin V- (s, a) = max E[R(s, a) + V- (1(s,a),d")].  (2)

cross-selling effects among various product categories. , )
Challenges arise when historical marketing actions dat¥/h€reVx- (s, a) is the expected long-term cumulative reward

are absent, and a standard RL-based approach is inaBt— states with a as the action, if policyr* is followed at

plicable. We propose to modify the RL framework with €Very step in the futurey is a discount factor withir0, 1].
the notion of action proxy. More specifically, we design A constrained MDP is an MDP where the policies under

a family of action proxies, calledategorical action proxy consideration must belong to a set of permissible polidies,

(CAP). CAPs are formulated with respect to target reward" @ standard constrained MDP [6], a policy is determined
values for a given set of categories. In the business problerfiPJect o a set of bounds on cumulative discounted “costs”.
under consideration, CAPs are used to quantify crossagelli 1) Reinforcement Learning: When the state transition
effects across product categories. CAPs are substitutes fgrobability function,r(s, a) and the reward functior(s, a)
missing marketing actions, and can be learned and optimizedf® known, value iteration is a standard method to compute
by our framework. For each customer, a learned policy idhe optimal policy. It follows Bellman's equation, which
generated to determine a sequence of product categori§§Presses the value at a certain time point in terms of
designated for this customer. Such sequence represents &if Payoff from some initial choices and the value of the

optimized temporal cross-selling pattern across categpri rem_aining decision prob_le_m t_hat re_sults from those initial
providing insights to decision makers. choices. Nonetheless, difficulties arise when the exaot$or

of 7(s,a) and R(s,a) are unknown. This turns the MDP
I1l. M ARKOV DECISION PROCESS solving into a reinforcement learning problem. A variant of
AND LIFETIME VALUE MODELING RL is Q-learning [7]. Q-learning uses the ideaegperience-

We briefly review MDP and RL-related concepts and thePased updating. Value functions are updated according to

motivation of using them for customer LTV modeling. the empirical quadrupless;, a;, (s, ), R(s:, a;)) come
across in the data. L& (s, a) denote the)-value function

A. Markov Decision Process for states if action a is taken during the&™ iteration.

MDP is a Markov system with discounted rewards. Key Qolst, ar) = R(sy, ar),

components of a standard MDP includ#) the state space,

S = {s1,52,...,5,}, and an initial state distributiom : Qr+1(st, 1) = (1 — k) Q(s1, ar)
S — R; (2) the action spacel = {ai,as,...,a,}, with + ar(R(st, ar) +7{2§§Qk(8t+1,at+1)),
a transition probability functiom : S x A x S — [0,1],
such thatvVs € S, Va € A, Tyeg7(s']s,a) = 1, where
7(s'|s,a) is the conditional probability of transiting to state whereqy, is the learning ratio at iteratioh. The power of
s’ from states as a result of actiom; and(3) the expected RL lies in its ability to solve the MDP without explicitly
immediate reward functiol® : S x A — R, whereR(s,a) requiring the MDP model of the environment.

7" (s¢) = argmax,, Qoo (St, at), 3)
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One instantiation of CAPs is the changes of purchase
amounts in various product categories. Such changes reflect
the change of attitude of a customer towards a specific
el product type. A positive change shows an increase of irtteres
: \‘-‘ from the customer, and the enterprise might want to invest
== Defector more in promoting related products; whereas a negative
change probably implies a decrease of interest. The learned
Figure 2. Customer State Transition Example policy contains rich information on how various categories
interact over time, providing valuable cross-selling dgmi
for marketing decision makers.
B. MDP in Customer LTV Modeling A policy, in the context of CAPs, is interpreted as:

Maximizing the expected customer LTV can be formu-7 : S — A = {d}, whered = (5(1),...,5(C))" is
lated as maximizing the discounted cumulative reward in al€ purchase amount change vector of lengtiwith C' as
MDP. A state in MDP is extracted from a set of purchasethe numbgr of categories. Let denote the customer state
features of a customer, such as demographics, purcha¥gctor at timet (composed of a set of featuresy:(s;) =
history, and so on. When using MDP, we focus on thed = (3¢(1),...,6,(C))", wherej,(c),c € {1,..., C} is the
purchase features. Customer states, such as “RepeatePUrchase amount change for categorfrom time interval
“Loyal Customer” and “Valuable Customer” (Fig. 2), can (t —1,) to (t,t +1).
further be extracted from their purchase features. Su¢essta B Congtrained Reinforcement Learning

measure h.OW valuable or profitable a customer is to the The CAP formulation is continuous and related to the im-
enterprise in the long run, and they can be translated tg

a set of conditions on the purchase features. An action irr1nedlate rewards, thus straightforward learning would gene

. . ._ate a policy that allocates infinite values to the action @®x
MDP corresponds to a marketing action, such as promOtIOIE'unbounded behavior). It is critical to impose constraoris

campaigns, ma_lllng Catal()gs’ online advertisements, and Xhe learned policy. The constrained MDP enforces the policy
forth. A marketing action takes a customer from one state

to another. In our problem formulation, we extract actionunder consideration to belong to a set of permissible sici

. C . . _which is determined with respect to a set of constraints. Our
proxies from historical rewards to approximate marketing 0al of constraints is twofold: 1) the assigned action Eexi
actions. Computing LTV directly from data only reflects 9 ' 9 e

e vlue atane by te isorcal poicy. WDP s e OTPAIS 0 Mal s obseves enrcaly ) e
to attain the optimal LTV, through the optimized policy. g )

Fig. 2 shows that MDP estimates the LTV along the optimal“mlts’ su_ch as f'”a“C"'?" and man-hour budgets.
. . A A family of constrained batch-mode RL methods have
path (black arrow from “potentially valuable” to “valuable : . ;

N o . been proposed in [2]. Amongst them is tleenstrained
customer”), as opposed to the historical path (white arrow, dati lqorith ined . f th
from “potentially valuable” to “defector”) advantage updating algorithm, a constrained version of the

' algorithm by Baird [8], which extends standard Q-learning
IV. METHODOLOGY to variable time intervals and continuous time-stamp sce-

narios. Advantage updating learns the relative advantége o

Proxy-driven Reinforcement Learning (C-APRL), to address competing actions in any giyen state, thus a\{oiding e>_¢p|ici
LTV maximization in the absence of action data, with anestlmate of they)-value function. The underlying principle

emphasis on cross-sell discovery. The input of C-APRLOf adv_antage_updating f_ocuses on the _notion O].c ‘advantage”
is the historical transaction data without explicit mankgt Zf actlondat, n comEarldson to the optlma(lj a(_:tlogj[. Let
actions. The output of C-APRL is an optimized policy that (s:,a) denote such advantage, we can derive:

gives rise to sequences of action proxies that maximize
overall expected long-term rewards over all customers.

Loyal
Customer

We propose a MDP-based framewo@anstrained Action

Al a0) = 15 (R(5,80) + 72V (81) = V7 (3)), @)

* _ * / * (AN _
A. Action Proxies and Cross-Selling whereV*(s;) = maxy Q*(s,8) andQ*(s;, &) is the Q

i ) ) ) value of an optimal policyAt¢ denotes the time interval from
In some business scenarios, marketing actions, such as g S..1. From Eg. (4) we can further derive:

mailings and campaigns, are difficult to acquire. Such ab- 1

sence obstructs the statistical learning of the relatipnsh A(sya) = —(Q* (s, &) — max Q" (s, a,)).  (5)
between customer LTV and marketing actions. In this paper, At &

we propose action proxies, a set of observable features @dvantage updating is different from Q-learning in two
substitutes for the missing actions. In order to discovemspects: 1) it normalizes the Q-value with respect to time
temporal cross-selling relations across product categpri interval; 2) it normalizes the Q-value with respect to state
we employ the notion of categorical action proxies (CAPs).dependency and focuses on relative advantage of actions. Fo
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Figure 3. Overall Implementation of C-APRL Framework Figure 4. Segmented Linear Regression Example
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. . . . we use constrained linear programming optimization to
marketing data where time intervals are naturally variable . . ;
choose the optimal action proxies for each segment. Our

this is a desirable property. Previous work [2] has ob- . . .

. goal is to maximize the aggregated advantage over the entire

served that for the problem under study, advantage updatin . i o
opulation. According to Eg. (6), we need to maximize

outperforms Q-learning empirically (also confirmed by our 3
own experience). Therefore we adopt the batch advantage max{z [S|fs - &}, @)
updating as the reinforcement learning method in this work. S
where|S| is the cardinality of segmeist Two types of con-
straints are applied on the optimizatidh): It is imperative
To account for a state space with a lot of featufesction  to ensure the action proxies produced by the learned policy
approximation [1], [2] is used in the batch learning. An im- adhere to what was observed empirically in the past. We
plementation coupling segmented regression and constrain propose the usage of empirical bounds, expressed as
optimization is adopted. Fig. 3 shows the overall framework L . U
The input data are a set of time-stamped transaction records II= {W‘B < Eg[C xa] <B }v
Each record is a snap shot of the state of a customer (8)
at a time point. The data are grouped into a series of _ . o
episodes. Each episode corresponds to one customer, af§€reC™ is a € x C diagonal matrix withC* (c, c) as the
contains all the transaction records of this customer. thea UNit CLOSt mcurre[(Jj by action proxy c € {1,...,C} in state
iteration, a segmented linear regression model is appled 0% B (¢) and B”(c) are the lower and upper for action
all the episodes, the output of which consists of a set ofPTOXY ¢ For all segments, we constrain the policy as:
segments, each with a linear regression model. Constrained . > s as(c)[S] U
optimization is then applied on all the segments. Bs(e) < > s S| =Bslehe={L....C} )
Segmented Linear RegressionAt iteration & of advan-  \yhere g is the assigned action vector of the optimization
t"’l‘lgiu%da“ng' WZ perform segmgnted Ilfnear regressm:jnbov%r all C action proxies in segmerff. The assignment is
all the data episodes. Data records are first segmented ba ; L U
on their features, with a linear regression model in eac?i%;?igaﬂlovt\?eragn:jez%gzr Iﬁbfnség)foﬁngcﬁgé%ri;ég?
segment. Each segment is defined by a conjunctive conditiofhe state spacs, constraining the range of allocation over
on the features and a regression equation. In each segmefje population. One way to compute such bounds is to

the linear regression is conducted on the advantage valugge empirical mean minus and plus the empirical standard
Ay, which is estimated in terms of action proxies. Fig. 4 javiation. as in Eq. (10):

exemplifies this with a simple case, where a tree structure ~

is used to segment the records. The root groups the records ,,4(¢c) — o5(c) < M < pus(c) + og(c).  (10)
according to the profit of sportswear, the results of which > s 1S|

will be further classified using criteria on other features.2) In reality, promotion is conducted subject to limited
The leaf nodes are the final segments, each associated withr@sources and budgets, which imposes a second type of con-
regression model, with the advantage value as the regissastraints. We especially consider the loyalty group cotirstsa

C. Framework Implementation

and action proxies as the regressors. Each customer belongs to a loyalty group, which reflects
0 -, how “loyal” this customer is to the enterprise. Each segment
Ak(s) = Ai(s) +6s - a8 €. (6) s associated with a loyalty group, i.e. all customers is thi

Eq. (6) is the linear regression for segmeéhtwheres, ~ Segmentbelong to the same group. Each loyalty gepbias
belongs toS and A)(s;) is a constant. Eq. (6) yields a set & 9roup budge_B(g), which limits the the amount of actions
of coefficients for the action proxies, denoted by vedigr ~ 2SSigned to this group.

_ Co_nstrained Linear Program_ming Optimiz_ation. At 0< Z 3 Cs = Z ZQS(C)CS(C) < B(y),
iteration £ of advantage updatlng,_once a Im_ear reIaFlon SIG(S)=g SIG(S)=g ©

between the advantage and the action proxies is established (12)



Data: Historical dataD = {(s; ;,a; j, Ri j, ti;)},i = is the observed discounted cumulative reward, wfttas

.,N,j=1,...,1; grouped intoN episodes the number of time stamps looked ahead. As shown, lift
(I; in length each), iteration numbés¢ evaluation employs bias correction, in whidky,(s;,a;)
Result Optimal policy 7}, is multiplied by the ratio between the probabilities of the

action proxy vectors by the respective polici®s,,[a;|s;]

is the conditional probability of observirgy ats; according
Initialize 4y = {A” } for all states to m, and Prz[a:|s] is that according to7. Assuming
3 for k=1to K do independence among action proxies we have:

1 Initialize Do = {((si;, . ; ), At >} for all states;

N

4 Segmented Regressiorapply segmented
regression upom;, to obtain a set of segments gr” a:||st H gr” ‘2 ={1,...,C}, (13)
{S1,...,Sm}, whereS; corresponds to a o B[] o[
regression model expressing the relations which is thebias ratio in the bias correction. Due to its wide
betweenA, (i, j) and feature vectofs; ;, a; ;); usage in finance and marketing [10], where large monetary

5 | Constrained Optimization: for each segment, values exist pervasively, we propose to adbgg-normal
assign the best action proxies via constrained digtribution (In.\) to model action proxy allocations. We
optimization to maximize Eq. (7) s.t. Eq. (9) and  consider the action proxy distribution within each regi@ss
Eq. (11); use those assigned action proxies to |  segment. Each record is associated with an observed action
update policyr;; proxy vectora; (from my) and an assigned vectéy (from

6 | Advantage update:updateA; usingy; 7). Log-normal distribution is assumed faf(c) anda;(c)

7 return 7; within any segmen$. Pr[a;|s)] = Pr[a:|S,s: € S| holds for
Algorithm T, C-APRL Framework both # and m,. Based on thén A/ PDF

1 (Inz — p)?
P(x) Nomo? exp{ ) }’

where the loyalty group of segmefitis ¢ andCs(c) is the
unit cost of taking actiore for segmentS. Eq. (11) states
that the cost of promotion over all segments associated wit
a certain group should not exceed a budget specific to this
group. Alg. 1 describes the overall C-APRL framework. Prs[a(c)|s]

where ando are themean and standard deviation of the
variable’s natural logarithm. If we assurie~ In N (i, 52)
ndmo ~ In N (uo, o2), we can derive

(Inay(c)—f
wwm exp{—{REgEEL Ay

Pr, [a N (e o?
V. LIFT ADVANTAGE EVALUATION oa(o)ls] C)We xp{— }
A challenge for any data-driven business optimization o0 (Inay(c) — po)?>  (Inag(c) — fi)?

methodology is to effectively evaluate the performancehSu =% & { 202 - 252 2

evaluation is typically required to be done without real
deployment and using only historical data. It is difficult where both policies’ mean and standard deviation can be

since historical data only behave according to the observegiStimated from the observed action proxy vectors embedded

policy. Importance sampling-baséis correction [9] is a in the data,{a;}, as well as the allocated action proxy
viable method to overcome such difficulty, and has beerY€CtOrs, {a}. There_zfore by using log- nqrmal distribution,
used in past works [1], [2]. We introduce bias correction-e are abl_e to est|m§\te the expected lift advantage of the
basedift advantage evaluation, an effective way to measure '€aMed policy according to Eq. (12).

the expected cumulative reward of a learned policy when VI. EXPERIMENTS

sampling the data with respect to the observed policy.
Let 7 be the learned policy by the C-APRL framework,
while let 7y be the observed policy. LeR,, (%) be the
expected cumulative reward &f over all possible states
when sampled with respect t and state distributiow. It

is formulated as:

Experiments are done on real-world data of multiple
domains, ranging from retail to recommendation systems.
C-APRL is shown to produce policies that can enhance
the long-term rewards. Coin-OR linear programming (€lp)
toolkit is used as the optimization solver.

E (~) _ E[ Pl‘ﬁ—[at|st] ﬁ ( )} (12) A. Data Sets
o) = Pry,las|s] ™ S % Two real-world data sets are used. Each is processed into
Prz[a:|s] a series of time-stamped records, half for learning and half
= E[prm [a]s/] ( i=0 7 B(St+i, at+i))]’ for testing, i.e. lift evaluation. Each record contains aicfe

features, including the action proxy fields and the immediat
which measures the expected cumulative reward achieved

by 7, estimated using as the sampling pollcyR770 (st,a) lhttps:// projects.coin-or.org/dp



Table |
CATEGORICAL ACTION PROXIESDESCRIPTION ONSaks AND Movielens

| Saks I MovielLens |
ID | Description LB ($K) | UB ($K) || ID | Description LB UB
1 | Women'’s clothing, bridal apparel, et¢. -0.07 0.18 1 | Action, crime, war, western, etc. -13.40 | 60.98
2 | Jeans, denim, sportswear, etc. -0.04 0.14 2 | Adventure, fantasy, thriller, etc. -10.17 | 46.84
3 | Loungewear, kids’ clothing, etc. -0.05 0.14 3 | Animation, children’s, etc. -2.38 | 11.35
4 | Men’s furnishing & accessories, etc] -0.04 0.09 4 | Comedy, musical, romance, etc. -12.07 | 54.91
5 | Specialty shops, etc. -0.04 0.06 5 | Documentary, etc. -0.21 | 0.90
6 | Footwear, etc. -0.17 0.35 6 | Drama, etc. -8.79 | 38.27
7 | Catalog goods, etc. -0.01 0.01
8 | Fragrance, body treatments, etc. -0.02 0.04
9 | Accessories, jewelry, etc. -0.14 0.19
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Figure 5. Iterative Lift Evaluation on C-APRL and Observedliies Figure 6. Lift Advantage vsf on C-APRL and Observed Policies

reward field. Table | shows the semantics of the categorical 1) Learned vs. Observed: Lift evaluation illustrates the
action proxies (CAPs), their empirical lower bound (“LB") advantage of C-APRL policy compared to the observed
and upper bound (“UB”) (Eqg. (10)). policy, using the estimated average cumulated reward (EAC-
Saks Fifth Avenue Data.The Saks data are the sales reward) over a specified numbef)(of time stamps into
data provided by Saks Fifth Avenue. A sample of 5,000the future. Fig. 5 plots how the EAC-rewards of the two
customers is used, and a sequence of 68 states is generaalicies change with the iteration fgr= 2. For C-APRL, a
for each of them, corresponding to 68 marketing campaigngypical run starts with a policy that is relatively uninfoeah,
in 2002, amounting to 340,000 data records. Each record/hich does not show apparent advantage over the observed.
represents a time-stamped historical transaction. CAPs ain later iterations, C-APRL framework achieves significant
the purchase changes of 9 categories (Table 1), where “cakdvantage via iterative re-modeling and re-optimizatidre
alog goods” are those purchased from the catalogs. learning curves of the C-APRL policy exhibit local optima,
MovieLens Data. The MovieLens data collected from and tend to fluctuate through the iterations. It shows that
MovieLeng contain 1,000,209 anonymous ratings (each isC-APRL is able to learn from previous errors and improve
an integer in1, 5]) of approximately 3,900 movies made by the performance in response; once the performance starts
6,040 MovieLens users. We segment the data into 15 timéo deteriorate due to accumulated errors, this cycle rgpeat
windows for each user. CAPs are the ratings of 6 moviewhich leads to the presence of local optima. It indicates the
categories (Table 1) in the current time window and thetrade-off between the benefits of iterative improvemend, an
immediate reward is the total rating in the next, since wethe errors cumulated due to many applications of regres-
consider the customer’s overall satisfaction as an indicat sion. The results are nonetheless encouraging. C-APRL can
of this customer’s potential value to the rental company. increase the long-term rewards for both data sets with an
appropriate stopping rule.
B. Lift Evaluation and Comparison Fig. 6 shows the comparison from another perspective,

In order to establish comparison, we compare C-APRLI-€. how the EAC-rewards change ovgr In most cases,
to the observed policy and a baseline policy. The observethe EAC-rewards decrease gsincreases. This is because
policy is that embedded in the data without optimization. Athe EAC-reward for each record, is divided by a factor that
non-iterative baseline does not apply reinforcement iegrn measures the overall cumulated discount from tirteet + f.

(“Non-RL Baseline”) and finishes after one iteration. A larger value of f results in a larger denominator. The
apparent lift advantage over the observed policy validates

2htt p: / / wwy. novi el ens. or g/ the effectiveness of C-APRL.



Table I
MOSTFREQUENTACTION SEQUENCES ONSaks AND Movielens

| Saks I MovieLens |
C-APRL, f =2 Observed C-APRL, f =2 Observed
klAction Sequence k|Action Sequence k|Action Sequence k|Action Sequence
Tcatalog—jewelry—women’slmen’s furnish—footwear—~women’s|1war—crime—drama Ticomedy—romance»comedy
2ispecialty—+catalog—jeans [2/specialty—»jewelry—footwear 2lcrime—action—»romance |2drama—drama-drama
3jeans—jewelry—jeans 3footwear—catalog—footwear 3western—~drama—adventuri8laction—crime—adventure
4lspecialty—catalog—catalog4{specialty~men’s furnish-specialtyl4laction—crime—adventure [4laction—comedy-romance
5lkids’—catalog—jewelry  [5jeans—catalog—catalog 5ladventure»western-crimel|5laction—crime—romance
Table 11I
EXAMPLE MODELING SEGMENTS ONSaks AND Movielens
| Saks I MovieLens
Segment Definition Action Allocation Segment Definition Action Allocation
If {profit_total < 86.56, footwear: 12.96 If {2 < rating_total < 176 comedy: 58.39
profit_jewelry < 317.50, fragrance: 75.83 rating fantasy> 1,
profit_men furnish > 3.00, etc} rating drama< 8, etc}
Then {reward - 146.45 = Then {reward + 0.1 =
4.66 x jeans + 9.99« footwear 0.08 + action + 0.05x comedy

300
250 C-APRL Framework mmmmm
Non-RL BaselineEz

200
&
2

800 [ C-APRL Frameworkimmmm action sequences are estimated after a number of records are
Non-RL Baselinerzz
sampled from the test data. Each sampled record and the
number of records following it are used to build a sequence.
I For the observed policy, records are sampled randomly; for
gooE o= the C-APRL policy, records are sampled stochastically by
2 3 4

150
100

o
=]

Avg. Cumultd. Rewd. Advtge.
Avg. Cumultd. Rewd. Advtge.
B
o
o

0 B 00— o '
1 3 a4 1 their bias ratios. Table 1l shows the top-5 most frequent
Time Stamps Looked Ahea, Time Stamps Looked Ahea, action sequences. Interesting temporal cross-sell sffaet
(a) Saks (b) MovieLens observed. For example, C-APRL @&aks favors sequences

such as: catalog goods, followed by jewelry/accessorids an
followed by women'’s clothing (No. 1); while oklovieLens

it favors sequences such as: western, followed by drama and
then by adventure (No. 3).

Figure 7. Lift Advantage vsf on C-APRL and Baseline Policies

2) lterative Learning vs. Non-iterative Baseline: To ver-
ify that the advantage by C-APRL is indeed caused by
iterative_ modeling, a nqn—RL baseline method i_s use_d forP. Case Study on Modeling Segments
comparison. The baseline completes only one iteration o
C-APRL without iterative improvement, but the advantages We also inspect concrete examp|es of regression seg-
are initialized as empirical LTVs (cumulative discounted ments. For example, the left column of Table Il shows
rewards from the current time till the end), rather than justhe 16" segment taken from th&"® iteration of C-APRL
immediate rewards. The effect of iterative improvement ispn Saks (f = 2,A = 0.6). It contains 8,573 records,
shown in Fig. 7. It is evident that the lift advantage by C-around 5% of the entire test population. The segment
APRL over the observed policy, is much larger than that bygefinition consists of constraints on the features and the
the baseline. Apparently direct modeling without iterativ assigned coefficients on action proxies. The definition can
learning does not lead to any policy advantage. be interpreted as: “if within the short past, the total profit

) . is less than $86.596, the profit of accessories/jewelry is
C. Sequential Pattern Recognition below $317.%, and that of men’s furnishing/accessories

A policy gives rise to a sequence of actions. We study thés above $¥, then jeans/sportswear and footwear would
semantics of the policies via examining the most frequenpotentially have high impacts on the long-term customer
action sequences. An action sequence is built from a setwards”. A cross-sell effect can thus be indirectly id#edi.
of f + 1 records, each associated with a representativ@he “Action Allocation” column denotes the assigned values
action proxy (RAP). Each action proxy is chosen to be then this segment by constrained optimization. As indicated,
representative with a probability proportional to its alysel  the optimized allocation favors footwear and fragranceybo
value in that record, i.ePr[RAP(s;) = ¢] ~ a;(c). All treatment, which further attributes the lift advantage to
f+ 1 RAPs form an action sequence. Thanost frequent enhanced consideration of temporal cross-selling.



VII. RELATED WORKS

(3]

Two directions have emerged in modeling customer be-
haviors, customer lifetime value modeling [2], [1], [1112],
[13], [14] and cross-sell mining [4], [15]. Typical example
in the first direction include RFM model [13], probability
model [14], and MDP model [2], [1]. The second direction

focuses on discovering cross-sell effects. An association

[4]

(5]

rule-based objective function is proposed in [4] to measure
the cross-sell utility of products and is further used tesel
products for promotion. Our work is motivated to combine
those two into a unified framework.

Our framework couples MDP with RL to address a
business optimization problem. MDP has been studied aq7]
the framework for autonomous learning in both humans
and robotics [16]. However, applying MDP to business
optimization has been under-explored. Meanwhile, various
RL techniques were proposed [7], [17], [18]. A variant of
RL is Q-learning [7]. Q-learning uses the idea of experience [9]
based updating. It can be done either online or in batch [17],
[18]. Batch RL reduces the amount of data needed by
leveraging available computation and memory [18]. In this
work, batch advantage updating [2] is adopted insteadngive

its advantage in business optimization.
The problem addressed in this work is integrating dat

(6]

Ju1]

modeling into the process of decision making, which has
been studied extensively. Notable examples include cost
sensitive learning [19] and economic learning [20]. The
cost structure used in those works, is however simple anhlz]
straightforward. In real world, complex constraints exest

restrict permissible decisions. It is essential to exteost ¢
minimization to constrained cost optimization, which ison
of the goals of this paper.

VIII. CONCLUSIONS

(13]

. . 14

In this paper, we address a general problem in customér ]
LTV modeling, and propose a solution using a novel variant
of RL supported by “action proxy”. We present a practical

application of this general idea, namely, the problem ofl 15

temporal cross-sell optimization. Experiments on realldvor
data show that the enhanced performance is due to both the
iterative re-optimization and the consideration of tengpor [16]
cross-selling effects. Our future works include: explore
other alternatives of formulating action proxi€y;incorpo-
rate more types of business constraii¥smake the system
less parameter-laden for future deployment.
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